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Abstract. A level set method for the topological optimization of domains is proposed and analyzed
in this paper. The framework of the analysis is that of elliptic optimal control problems with a binary

control acting as a source term of the state equation. The main ingredient of the algorithm is the
concept of topological derivative. Convergence results are proven and illustrated by some numerical
experiments.

1. Introduction

The representation of free boundaries as the zero level set of a function defined over a larger fixed
domain has become very popular in shape optimization. From the numerical point of view, a major
advantage of this strategy is to allow an accurate description of the boundaries on a fixed mesh, thus
avoiding costly mesh adaptation or remeshing procedures. Also, as the sign of the so-called level set
function permits to clearly segment the hold-all into two regions, no intermediate densities need to
be introduced. This approach is therefore in this respect more direct than relaxation methods, where
penalization techniques must be applied in order to enforce extremal densities (see, e.g., [1, 6, 7]).

Since the pioneering work [19] dedicated to the numerical tracking of fronts, most authors employ
a Hamilton-Jacobi type equation to govern the evolution of the level set function. This formulation
arises naturally when one wants to move the level sets according to a prescribed velocity field (see,
e.g., [18] for a review on level set methods). The same idea has been applied in shape optimization
[3, 22], with the help of the following ideas: a fictitious time variable is involved, the opposite of
the shape derivative is used as velocity field, and the empty region is replaced by a weak phase
in order to avoid the singularity of the stiffness matrix and to extend the shape derivative to the
whole computational domain. Nevertheless this approach has some drawbacks. Firstly, due to the
discontinuity of the velocity field at the interface, the level set function tends to become very steep
in this place, which necessitates periodic reinitializations. Secondly, the method is not designed to
produce topology variations. In fact, holes can merge or cancel, but cannot nucleate. Hence the
obtained domains can be very dependent on the initial guess. Finally, the numerical solution of the
Hamilton-Jacobi equation involves a CFL condition which makes the propagation of the interface
rather slow. Several cures to these inconveniences have been devised, leading to a number of variants
of the original method [2, 8, 9, 11, 14, 16, 17].

A level-set-based method especially designed to allow topology variations was proposed in [5]. The
main ingredient is the notion of topological derivative [4, 12, 15, 21], which measures the sensitivity of
the objective functional with respect to the nucleation of small holes within the domain. Unlike the
original method and its variants, this one does not rely on a Hamilton-Jacobi formulation. Instead,
topological optimality conditions are written in the form of a fixed point relation, which is then solved
by successive approximations. All kinds of shape and topology variations can therefore occur without
introducing any parameter to decide how to combine descent directions of different natures. The
present paper is dedicated to the convergence analysis of this method. For simplicity, we consider the
situation where the shape intervenes at the right hand side of the state equation. In this case, the
topological derivative does not depend on the shape of the holes, hence it can be more easily exploited
to account for general domain variations.

The paper is organized as follows. The problem under consideration is stated in Section 2. Opti-
mality conditions are derived in Section 3. The algorithm is described in section 4, and its convergence
analysis is carried out in Sections 5 through 7. The discrete version of the algorithm is specified in
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Section 8, and some numerical examples are shown in Section 9. An appendix collects some auxiliary
results.

2. Problem statement

Let D be an open and bounded subset of R
2 with Lipschitz boundary ∂D. Given a pair (u−, u+) ∈

R
2 with u+ < u− (this choice of notation will be justified later), we define E as the set of all measurable

functions
u : D → {u−, u+}.

Let now ΓD be a part of nonzero measure of ∂D and V be the set of all functions of H1(D) with zero
trace on ΓD. Given a function y† ∈ L2(D) and a coefficient ν ∈ R, we investigate the following model
problem:

Minimize
(u,y)∈E×V

J(u, y) =
1

2

∫

D

(y − y†)2dx+ ν

∫

D

udx (2.1)

subject to the Poisson equation
∫

D

∇y.∇ηdx =

∫

D

uηdx ∀η ∈ V. (2.2)

We recall that V is continuously imbedded in Lq(D) for all q ∈ (1,+∞). Consequently, Problem (2.2)
admits a unique solution yu ∈ V for any u ∈ Lp(D), p ∈ (1,+∞). This allows to define the reduced
cost functional

j : u ∈ Lp(D) 7→
1

2

∫

D

(yu − y
†)2dx+ ν

∫

D

udx.

Due to the non-convexity of the admissible set E , the question of existence and uniqueness of a global
minimizer of (2.1)-(2.2) is by no means trivial. We shall not discuss this issue here.

3. Optimality conditions

We begin by recalling a standard differentiability result. We give a quick proof for completeness.

Proposition 3.1. Let p ∈ (1,+∞). The map

J : u ∈ Lp(D) 7→
1

2

∫

D

(yu − y
†)2dx

is of class C∞ in the sense of Fréchet. Its first order differential is given by

DJ (u)δ = −

∫

D

zuδdx ∀δ ∈ Lp(D),

where the adjoint state zu ∈ V solves
∫

D

∇η.∇zudx = −

∫

D

(yu − y
†)ηdx ∀η ∈ V. (3.1)

Proof. Set a(y, z) =
∫

D
∇y.∇zdx and ℓ(u, z) =

∫

D
uzdx. By virtue of the Sobolev imbedding recalled

above, the map (y, u) ∈ V × Lp(D) 7→ a(y, .) − ℓ(u, .) ∈ V ′ is linear and continuous, and thus of
class C∞. In view of the coercivity of a, the implicit function theorem implies that the solution map
S : u ∈ Lp(D) 7→ yu ∈ V is also of class C∞. Then J : Lp(D)→ R is of class C∞ by composition. For
any δ ∈ Lp(D), we obtain by the chain rule

DJ (u)δ =

∫

D

(yu − y
†)(DS(u)δ)dx.

Next, the adjoint equation (3.1) yields

DJ (u)δ = −a(DS(u)δ, zu).

Besides, we have a(S(u), z) = ℓ(u, z) for all (u, z) ∈ Lp(D)×V, which, by differentiating with respect
to u, provides

a(DS(u)δ, z) = ℓ(δ, z) ∀(u, δ, z) ∈ Lp(D)× Lp(D)× V.

Thus we arrive at
DJ (u)δ = −ℓ(δ, zu).

�
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Corollary 3.2. Let p ∈ (1,+∞) be given. For all u, v ∈ Lp(D), we have

j(v)− j(u) =

∫

D

gu(v − u)dx+R(u, v), (3.2)

where the sensitivity gu is defined by

gu = −zu + ν,

and the remainder R(u, v) enjoys the following properties.

(1) For all u, v ∈ Lp(D),

R(u, v) ≥ 0. (3.3)

(2) For all bounded subset A of Lp(D), there exists M > 0 such that

u, v ∈ A⇒ R(u, v) ≤M‖v − u‖2Lp(D). (3.4)

Moreover, if v = u+ βχB(x0,ρ), β ∈ R, x0 ∈ D, ρ > 0, then, for all γ ∈ (0, 1), there holds

j(v)− j(u) = πρ2βgu(x0) +O(ρmin(2+γ,4/p)). (3.5)

Proof. The nonnegativity of R(u, v) stems from the convexity of the cost functional J together with
the linearity of the solution map S. One can also directly check that R(u, v) = 1

2

∫

D
(yv−yu)

2dx. The
estimate (3.4) is a direct application of the Taylor-Lagrange inequality. If v = u + βχB(x0,ρ), then

(3.2)-(3.4) yield j(v)− j(u) = β
∫

B(x0,ρ)
gudx+ O(ρ4/p). By elliptic regularity, gu is locally H2, thus

γ-Hölder-continuous in the vicinity of x0 for all γ ∈ (0, 1). This straightforwardly leads to (3.5). �

An expression of the form (3.5) is generally called topological asymptotic expansion (see, e.g., [4,
12, 15, 21]). The function gu is known as the topological derivative of the functional j with respect to
the considered perturbation.

Definition 3.3. We say that a function u ∈ E is a local minimizer of (2.1)-(2.2) if

∃α > 0 | ∀v ∈ E , ‖v − u‖L1(D) ≤ α⇒ j(v) ≥ j(u).

We say that it is a global minimizer if j(v) ≥ j(u) for all v ∈ E .

Given a function f : D → R and a number a ∈ R, we denote [f = a] := {x ∈ D, f(x) = a}. If A is
a subset of D we denote by int(A) its interior. In view of Corollary 3.2 and Definition 3.3 we deduce
the following proposition.

Proposition 3.4. A necessary condition for u ∈ E to be a local minimizer of (2.1)-(2.2) is
{

gu ≥ 0 in int([u = u+]),
gu ≤ 0 in int([u = u−]).

(3.6)

A sufficient condition for u ∈ E to be a global minimizer of (2.1)-(2.2) is
{

gu ≥ 0 a.e. in [u = u+],
gu ≤ 0 a.e. in [u = u−].

(3.7)

Proof. The necessary condition (3.6) is a consequence of the expansion (3.5), where γ and p are chosen
arbitrarily in (0, 1) and (1, 2), respectively. To prove that the condition (3.7) is sufficient, we consider
another function v ∈ E . The variation v − u can be expressed as

v − u = (u+ − u−)χ− + (u− − u+)χ+,

where χ− is the characteristic function of some subset ω− of [u = u−] and χ+ is the characteristic
function of some subset ω+ of [u = u+]. Using (3.2) and (3.3) it comes

j(v)− j(u) ≥

∫

ω−

gu(u
+ − u−)dx+

∫

ω+

gu(u
− − u+)dx.

Both integrals are nonnegative, which completes the proof. �
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4. Description of the algorithm

To each continuous function ψ : D → R we associate the function uψ ∈ E defined by

uψ(x) =

{

u+ if ψ(x) ≥ 0,
u− if ψ(x) < 0.

(4.1)

In the sequel we will use the simplified notations

j(ψ) := j(uψ), gψ := guψ .

We will denote by Ln and Hn the n-dimensional Lebesgue and Hausdorff measures, respectively.
The first step in the construction of the algorithm is to reformulate Proposition 3.4 in the level set
framework.

Lemma 4.1. Let ψ ∈ C(D) be such that L2([ψ = 0]) = 0. Then uψ is a global minimizer of (2.1)-(2.2)
if and only if, for all x ∈ D, there holds

{

ψ(x) > 0 ⇒ gψ(x) ≥ 0,
ψ(x) < 0 ⇒ gψ(x) ≤ 0.

(4.2)

Proof. By continuity of ψ, we have ψ(x) > 0 ⇒ x ∈ int([uψ = u+]) and ψ(x) < 0 ⇒ x ∈ int([uψ =
u−]). Then using (3.6) yields directly the necessary condition. Let us now derive the sufficient
condition from (3.7). Thus, let x belong to [uψ = u+] ∩ [gψ < 0]. It stems from (4.2) that ψ(x) ≤ 0,
hence x ∈ [ψ = 0] or x ∈ [ψ < 0] ⊂ int([uψ = u−]). The second situation being impossible, it comes
[uψ = u+] ∩ [gψ < 0] ⊂ [ψ = 0], which is of zero Lebesgue measure. Likewise, L2([uψ = u−] ∩ [gψ >
0]) = 0, and the proof is complete. �

With the assumptions made, we have that gψ ∈ H3/2(D) (see, e.g., [20]), which is imbedded in

C0,1/2(D̄). This regularity is however not sufficient to use gψ as a descent direction. We will introduce
an auxiliary function g̃ψ with higher regularity and the relevant properties.

For any σ ≥ 0, we denote by 〈., .〉σ the canonical scalar product on the Sobolev space Hσ(D) and
by ‖.‖σ the associated norm. We denote by Sσ the unit ball of Hσ(D), i.e.,

Sσ = {ψ ∈ Hσ(D), ‖ψ‖σ = 1}.

We make the following assumption.

Assumption 4.2. There exists σ > 2 such that the following holds.

(1) For all u in E , there exists a function g̃u ∈ Sσ which satisfies, for all x ∈ D,

g̃u(x) > 0⇔ gu(x) > 0,
g̃u(x) < 0⇔ gu(x) < 0,

(2) The map u ∈ E 7→ g̃u is continuous for the norms ‖.‖L1(D) → ‖.‖σ.

Note that, when D is smooth, V = H1
0 (D), y† ∈ Hs(D), s > 0, and ν 6= 0, we can simply

take g̃u = gu/‖gu‖σ. Indeed we have by elliptic regularity that gu ∈ H
min(2,s)+2(D) for all u in E ;

furthermore, gu 6= 0 since gu|∂D = ν 6= 0.
We now fix σ so that Assumption 4.2 is fulfilled. The proposed algorithm is based on the observation

that the equivalence relation

∃λ > 0 | g̃ψ = λψ (4.3)

is a sufficient optimality condition for any function ψ ∈ Hσ(D) which is nonzero almost everywhere
(see Lemma 4.1). Of course, there holds

uλψ = uψ ∀ψ ∈ Hσ(D), ∀λ > 0, (4.4)

thus, without any loss of generality, we will restrict the search to unitary functions ψ. More precisely,
we will apply the fixed point iteration on the unit sphere Sσ to the solution of (4.3), which becomes

g̃ψ = ψ. (4.5)

To do so, for all ψ,ϕ ∈ Sσ and all κ ∈ [0, 1], we denote by θ the non-oriented angle between ψ and ϕ,
that is

θ = arccos 〈ψ,ϕ〉σ. (4.6)
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If the vectors ψ and ϕ are linearly independent, we denote by Cκ(ψ,ϕ) the image of ψ by the rotation
of angle κθ in the oriented plane generated by the pair (ψ,ϕ). We have by this definition

Cκ(ψ,ϕ) = cos(κθ)ψ + sin(κθ)
k

‖k‖
,

where k denotes the orthogonal projection of ϕ onto the orthogonal hyperplane ψ⊥ of ψ, i.e., k =
ϕ− cos θψ. A straightforward calculation results in

Cκ(ψ,ϕ) =
1

sin θ
[sin((1− κ)θ)ψ + sin(κθ)ϕ] .

If ψ = ±ϕ, we set by convention Cκ(ψ,ϕ) = ϕ for all κ ∈ [0, 1]. The structure of the algorithm is the
following.

Algorithm

(1) Set n = 0 and choose some ψ0 ∈ Sσ.
(2) If (4.2) is satisfied then stop else set

ψn+1 = Cκn(ψn, g̃ψn)

with some κn ∈ [0, 1].
(3) Increment n← n+ 1 and goto (2).

At each iteration, the step κn ∈ [0, 1] is fixed by a line search. This issue will be discussed in Section
8.

5. Variation of the objective functional with respect to boundary perturbations

We define the set

G = {ψ ∈ Hσ(D), [ψ = 0] ⊂⊂ D,∇ψ 6= 0 on [ψ = 0]}.

We recall that σ > 2, hence Hσ(D) is continuously imbedded in C1(D̄) (see, e.g., [10]). Hence, for all
ψ ∈ G, the level set [ψ = 0] is compact, and thus, inf [ψ=0] |∇ψ| > 0. We begin by a continuity result.

Lemma 5.1. Let ψ ∈ G. There exists c1, c2 > 0 such that for all ϕ ∈ L∞(D),

‖ϕ‖L∞(D) ≤ c1 ⇒ ‖uψ+ϕ − uψ‖L1(D) ≤ c2‖ϕ‖L∞(D).

Proof. Let ψ ∈ G and ϕ ∈ L∞(D). We have

‖uψ+ϕ − uψ‖L1(D) = (u− − u+)

[

∫

[−ϕ≤ψ<0]

dx+

∫

[0≤ψ<−ϕ]

dx

]

.

Hence

‖uψ+ϕ − uψ‖L1(D) ≤ (u− − u+)

∫

[−‖ϕ‖L∞(D)≤ψ<‖ϕ‖L∞(D)]

dx.

We can rewrite this latter integral as
∫

[−‖ϕ‖L∞(D)≤ψ<‖ϕ‖L∞(D)]

dx = F (‖ϕ‖L∞(D))− F (−‖ϕ‖L∞(D)),

with

F (t) =

∫

[ψ<t]

dx.

By Corollary A.5, the function F is differentiable at 0, which enables to conclude. �

Lemma 5.2. For all ψ ∈ G and ϕ ∈ C1(D̄), we have

j(ψ + tϕ)− j(ψ) = −t(u− − u+)

∫

[ψ=0]

gψϕ

|∇ψ|
dH1 + o(t).
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Proof. Corollary 3.2 entails, for any p > 1,

j(ψ + tϕ)− j(ψ) =

∫

D

gψ(uψ+tϕ − uψ)dx+O(‖uψ+tϕ − uψ‖
2
Lp(D)).

By definition of uψ, this expression can be rewritten as

j(ψ + tϕ)− j(ψ) = u+

[

∫

[ψ+tϕ≥0]

gψdx−

∫

[ψ≥0]

gψdx

]

+ u−

[

∫

[ψ+tϕ<0]

gψdx−

∫

[ψ<0]

gψdx

]

+O(‖uψ+tϕ − uψ‖
2/p
L1(D)).

By using Corollary A.5 and Lemma 5.1, it comes for t small enough

j(ψ + tϕ)− j(ψ) = u+t

∫

[ψ=0]

gψϕ

|∇ψ|
dH1 − u−t

∫

[ψ=0]

gψϕ

|∇ψ|
dH1 + o(t) +O(t2/p).

Choosing p ∈ (1, 2) completes the proof. �

Lemma 5.3. Let ψ ∈ G. We assume that uψ is a local minimizer of (2.1)-(2.2). Then for all x ∈ D

ψ(x) = 0 ⇒ gψ(x) = 0. (5.1)

Proof. It suffices to take ϕ = g̃ψ in Lemma 5.2. Another proof consists in observing that [ψ = 0] ⊂

[ψ < 0] ∩ [ψ > 0], due to the non-vanishing of ∇ψ on [ψ = 0], and using (4.2) together with the
continuity of gψ. �

Lemma 5.4. Let ψ ∈ Sσ ∩ G, ϕ ∈ Sσ be two linearly independent functions. We have

j(Cκ(ψ,ϕ))− j(ψ) = −κ
θ

sin θ
(u− − u+)

∫

[ψ=0]

gψϕ

|∇ψ|
dH1 + o(κ). (5.2)

Proof. On the one hand, we observe that, for all κ ∈ (0, 1),

Cκ(ψ,ϕ) =
sin((1− κ)θ)

sin θ

[

ψ +
sin(κθ)

sin((1− κ)θ)
ϕ

]

, (5.3)

which, by virtue of (4.4), yields

j(Cκ(ψ,ϕ))− j(ψ) = j(ψ +
sin(κθ)

sin((1− κ)θ)
ϕ)− j(ψ). (5.4)

On the other hand, a straightforward Taylor expansion provides

sin(κθ)

sin((1− κ)θ)
=

κθ

sin θ
+ o(κ).

Applying Lemma 5.2 completes the proof. �

Lemma 5.5. Let ψ ∈ Sσ ∩ G be such that H1([ψ = 0]) > 0. We assume that the condition (5.1) is

not satisfied. Then there exists κ̄ > 0 such that, for all κ ∈ (0, κ̄], Cκ(ψ, g̃ψ) ∈ G and

j(Cκ(ψ, g̃ψ)) < j(ψ).

Proof. We first remark that, in view of the assumptions, ψ and g̃ψ are linearly independent. Then,
by virtue of Lemma 5.4 we have

j(Cκ(ψ, g̃ψ))− j(ψ) = −κ
θ

sin θ
(u− − u+)

∫

[ψ=0]

gψ g̃ψ
|∇ψ|

dH1 + o(κ).

This quantity is negative provided that κ is small enough. The fact that Cκ(ψ, g̃ψ) ∈ G for κ small is
a direct consequence of the regularity of the functions ψ and g̃ψ. �
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6. Variation of the objective functional with respect to topological perturbations

In this section we study the variation of the objective functional when the level set function ψ is
perturbed in such a way that the existing connected components of the interface [ψ = 0] are preserved,
while new ones are created. This corresponds to the case where (5.1) is satisfied. Then the leading
term in the asymptotic expansion (5.2) vanishes, thus higher order terms must be considered. We
start by two preliminary lemmas.

Lemma 6.1. For all ψ,ϕ ∈ Hσ(D), for all t ≥ 0, we have

ϕ [uψ+tϕ − uψ] ≤ 0 in D.

Proof. Let x ∈ D be such that uψ+tϕ(x)−uψ(x) < 0. This means that uψ+tϕ(x) = u+ and uψ(x) = u−.
Thus (ψ + tϕ)(x) ≥ 0 and ψ(x) < 0. Hence ϕ(x) > 0. We obtain similarly that uψ+tϕ(x)− uψ(x) >
0⇒ ϕ(x) < 0. �

Lemma 6.2. Let ψ ∈ Sσ ∩ G be such that (5.1) is satisfied. Then the function

ζψ := −
g̃ψ
ψ

extends by continuity on [ψ = 0].

Proof. We study the continuity of ζψ at some point x̂ ∈ [ψ = 0]. Let x ∈ D be in a neighborhood of
x̂. We denote by xh a projection of x onto the compact set [ψ = 0]. Due to the C1 regularity of the
curve [ψ = 0], this projection is orthogonal, i.e., the vector x− xh is colinear to the normal nh at xh.
By a Taylor expansion, we obtain

ψ(x) = ψ(xh) +∇ψ(xh).(x− xh) + o(|x− xh|).

Since ψ vanishes on [ψ = 0], it comes

ψ(x) = ∂nψ(xh)(x− xh).nh + o(|x− xh|).

Similarly, we have
g̃ψ(x) = ∂ng̃ψ(xh)(x− xh).nh + o(|x− xh|).

By assumption, ∂nψ does not vanish on [ψ = 0]. In addition, |x − xh| ≤ |x − x̂| and |xh − x̂| ≤
|xh − x|+ |x− x̂| ≤ 2|x− x̂|. Hence

ζψ(x) = −
∂ng̃ψ(xh) + o(1)

∂nψ(xh) + o(1)
→ −

∂ng̃ψ(x̂)

∂nψ(x̂)
(x→ x̂).

�

We define the set T as the set of all functions ψ ∈ G satisfying (5.1) as well as the following
conditions:

• either (4.2) is fulfilled,
• or argmax{ζψ(x), x ∈ D̄} = {x⋆} with ψ(x⋆) 6= 0, and there exists α > 0 such that∇ζψ(x).(x−
x⋆) ≤ −α|x− x⋆|2 for all x in a neighborhood of x⋆ and such that ψ(x) 6= 0.

The above condition roughly asserts that ζψ is not flat near its maximum. The proposed formulation
enables simple proofs, but it is not sharp.

Lemma 6.3. Let ψ ∈ Sσ ∩ T . We assume that (4.2) is not satisfied. Then there exist two positive

constants t < t such that

j(ψ + tg̃ψ) < j(ψ) ∀t ∈ (t, t). (6.1)

Moreover, ψ + tg̃ψ ∈ G for all t ∈ (t, t).

Proof. (1) First, we note that, as (4.2) is not satisfied, we have by assumption argmax{ζψ(x), x ∈
D̄} = {x⋆} with ψ(x⋆) 6= 0, and there exists α > 0 such that ∇ζψ(x).(x− x⋆) ≤ −α|x− x⋆|2

in the vicinity of x⋆. For all t > 0 we set

∆t = [ψ ≥ 0 ∧ ψ + tg̃ψ < 0] ∪ [ψ < 0 ∧ ψ + tg̃ψ ≥ 0].

In fact, in view of (5.1), there holds ψ(x) 6= 0 for all x ∈ ∆t. This permits to obtain the
inclusions

[ψ 6= 0 ∧ ζψ >
1

t
] ⊂ ∆t ⊂ [ζψ ≥

1

t
]. (6.2)
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It stems from the assumptions that, in the vicinity of x⋆,

ζψ(x)− ζψ(x⋆) ≤ −
α

2
|x− x⋆|2.

Therefore there exists t > ζψ(x⋆)−1 such that

∀t < t, x ∈ ∆t ⇒ ζψ(x⋆)−
α

2
|x− x⋆|2 ≥

1

t
. (6.3)

We now set t = ζψ(x⋆)−1 and, for all t > t,

ρ(t) =

√

2

α

(

1

t
−

1

t

)

.

Then we immediately derive from (6.3) that

∆t ⊂ B̄(x⋆, ρ(t)) ∀t ∈ (t, t). (6.4)

By Corollary 3.2 we have for any p > 1

j(ψ + tg̃ψ)− j(ψ) =

∫

D

gψ(uψ+tg̃ψ − uψ)dx+O(‖uψ+tg̃ψ − uψ‖
2
Lp(D)).

By Lemma 6.1 we can write

j(ψ + tg̃ψ)− j(ψ) = −(u− − u+)

∫

∆t

|gψ|dx+O(L2(∆t)
2/p).

Yet, in view of (6.4), the continuity of gψ and the fact that gψ(x⋆) 6= 0, we have |gψ(x)| ≥
m > 0 for all x ∈ ∆t provided that t is sufficiently small. Possibly decreasing t in this respect,
we get

j(ψ + tg̃ψ)− j(ψ) ≤ −(u− − u+)mL2(∆t) +O(L2(∆t)
2/p) ∀t ∈ (t, t).

In addition, for t > t, ∆t has nonzero Lebesgue measure by virtue of (6.2) and the continuity
of ζψ. We deduce (6.1) by possibly decreasing t again and choosing some p ∈ (1, 2).

(2) We now check that ψ+ tg̃ψ ∈ G for t suitably chosen, namely, that ∇(ψ+ tg̃ψ) does not vanish
on [ψ+ tg̃ψ = 0]. Let x̂ ∈ D and t > t be such that ψ(x̂)+ tg̃ψ(x̂) = 0. We distinguish between
two cases, depending on whether ψ(x̂) = 0 or ψ(x̂) 6= 0.
• We examine first the case where ψ(x̂) 6= 0. Then a simple calculation results in

∇(ψ + tg̃ψ)(x̂) = −tψ(x̂)∇ζψ(x̂).

We have ζ(x̂) = 1
t , hence |x̂ − x⋆| ≤ ρ(t). Thus there exists β > 0 (independent of

x̂) such that |ζψ(x̂) − ζψ(x⋆)| ≤ β|x̂ − x⋆| provided that t is sufficiently small, since ζψ
is C1 in the vicinity of x⋆ (possibly decrease t). In addition, we have by assumption
|∇ζ(x̂)| ≥ α|x̂− x⋆|. This implies

|∇(ψ + tg̃ψ)(x̂)| ≥
α

β
t|ψ(x̂)||ζψ(x̂)− ζψ(x⋆)| =

α

β
t2|g̃ψ(x̂)|

∣

∣

∣

∣

1

t
−

1

t

∣

∣

∣

∣

.

By continuity, since g̃(x⋆) 6= 0, we have |g̃ψ(x̂)| ≥ m > 0, with m independent of x̂. We
deduce that

|∇(ψ + tg̃ψ)(x̂)| ≥ m
α

β

t

t
(t− t).

• Consider now a point x̂ such that ψ(x̂) = g̃ψ(x̂) = 0. There exists δ > 0 and a neighbor-
hood O of [ψ = 0] such that

ζψ(x) ≤ ζψ(x⋆)− δ ∀x ∈ O.

We derive that, for all x ∈ O ∩ [ψ > 0],

ψ(x) + tg̃ψ(x) = [1− tζψ(x)]ψ(x) ≥

[

1− t

(

1

t
− δ

)]

ψ(x).

We impose δ < 1
t and we choose k ∈ (0, δt). We assume that t ∈ (t, t 1−k

1−δt ) (possibly

decrease t̄). It comes

ψ(x) + tg̃ψ(x) ≥ kψ(x) ∀x ∈ O ∩ [ψ > 0].
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This inequality can be rewritten as

[ψ(x) + tg̃ψ(x)]− [ψ(x̂) + tg̃ψ(x̂)] ≥ k[ψ(x)− ψ(x̂)] ≥ 0 ∀x ∈ O ∩ [ψ > 0].

We choose x = x̂ + λn with λ > 0 and n the unit normal to [ψ = 0] oriented towards
[ψ > 0]. By letting λ go to zero it comes

∂n[ψ + tg̃ψ](x̂) ≥ k∂nψ(x̂) ≥ 0.

Thus,
|∇(ψ + tg̃ψ)(x̂)| ≥ k|∂nψ(x̂)| > 0.

�

Lemma 6.4. Under the assumptions of Lemma 6.3, there exist two positive numbers κ < κ such that,

for all κ ∈ (κ, κ), Cκ(ψ, g̃ψ) ∈ G and

j(Cκ(ψ, g̃ψ)) < j(ψ). (6.5)

Proof. From (5.4), we get

j(Cκ(ψ, g̃ψ))− j(ψ) = j(ψ + tκg̃ψ)− j(ψ)

with

tκ =
sin(κθ)

sin((1− κ)θ)
.

We easily check that the map κ 7→ tκ is an increasing homeomorphism of (0, 1) into (0,+∞). Applying
Lemma 6.3 leads to (6.5). We prove that Cκ(ψ, g̃ψ) ∈ G by using the factorization (5.3) together with
the fact that ψ + tκg̃ψ ∈ G. �

7. Convergence of the algorithm

Let j̃ be the lower semi-continuous regularization of the function ψ ∈ Hσ(D) 7→ j(ψ), i.e.,

j̃(ψ) = lim inf
ϕ→ψ

j(ϕ).

Note that, at all point ψ ∈ G, j is continuous by virtue of Lemma 5.1, thus j̃(ψ) = j(ψ). We now
assume that the step κn at iteration n of the algorithm is chosen such that

j̃(Cκn(ψn, g̃ψn)) = min
κ∈[0,1]

j̃(Cκ(ψn, g̃ψn)).

The following theorem states that if the algorithm converges, or at least it has accumulation points,
then the resulting domains are optimal, under some conditions. Because of the non-compactness
of Sσ, the existence of accumulation points cannot be proved in general in the infinite dimensional
setting. However, after discretization of Sσ, accumulation points will always exist, and the numerical
computations shown in Section 9 seem to produce mesh independent solutions.

Theorem 7.1. Let ψ⋆ ∈ Sσ be an accumulation point of the sequence (ψn) generated by the algorithm.

We assume that H1([ψ = 0]) > 0.

(1) If ψ⋆ ∈ G, then ψ⋆ satisfies the geometrical optimality condition (5.1).
(2) If ψ⋆ ∈ T , then ψ⋆ satisfies the topological optimality condition (4.2).

Proof. (1) We argue by contradiction by assuming that ψ⋆ is an accumulation point which does
not satisfy (5.1). By Lemma 5.5, there exists κ > 0 such that Cκ(ψ

⋆, g̃ψ⋆) ∈ G and

j̃(Cκ(ψ
⋆, g̃ψ⋆)) < j̃(ψ⋆). (7.1)

Consider a subsequence, still denoted by (ψn)n∈N such that limn→+∞ ‖ψn − ψ
⋆‖σ = 0. By

Lemma 5.1, we also have limn→+∞ ‖uψn − uψ⋆‖L1(D) = 0, thus limn→+∞ ‖g̃ψn − g̃ψ⋆‖σ =
0. This clearly entails limn→+∞ ‖Cκ(ψn, g̃ψn) − Cκ(ψ

⋆, g̃ψ⋆)‖σ = 0. Hence by continuity

limn→+∞ j(Cκ(ψn, g̃ψn)) = j(Cκ(ψ
⋆, g̃ψ⋆)) = j̃(Cκ(ψ

⋆, g̃ψ⋆)). Therefore, in view of (7.1),
there exists N ∈ N such that

j̃(Cκ(ψn, g̃ψn)) < j̃(ψ⋆) ∀n ≥ N. (7.2)

Next, as the sequence (j̃(ψn))n∈N is non-increasing, we have

j̃(ψ⋆) ≤ j̃(ψn+1) = j̃(Cκn(ψn, g̃ψn)) ∀n ∈ N.
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Using now the optimality of the step, it comes

j̃(ψ⋆) ≤ j̃(Cκ(ψn, g̃ψn)) ∀n ∈ N. (7.3)

Comparing (7.2) and (7.3) leads to a contradiction.
(2) The same argument applies in the second case, based on Lemma 6.4.

�

Remark 7.2. (1) The convexity of J has been used only to prove that the necessary optimality
condition (4.2) is also sufficient.

(2) In case the algorithm converges to a function ψ⋆ which does not belong to G, a reinitialization
of ψ⋆ may be performed and the iterations continued (see, e.g., [3]). If ψ⋆ ∈ G \T , then either
ψ⋆ or g̃ψ⋆ may be reconstructed.

(3) The lower semi-continuous regularization of the objective functional has been introduced for
theoretical purposes only, in order to guarantee the existence of an optimal step.

8. Numerical algorithm

8.1. Discretization of the state equation and discrete sensitivity. We consider a finite element
approximation of the state equation (2.2) with Lipschitz continuous basis functions. Given a finite
dimensional subspace Vh of V, this leads to the semi-discrete optimization problem

Minimize
(u,y)∈E×Vh

J(u, y) =
1

2

∫

D

(y − y†)2dx+ ν

∫

D

udx (8.1)

subject to
∫

D

∇y.∇ηdx =

∫

D

uηdx ∀η ∈ Vh. (8.2)

For any u ∈ E and yhu ∈ V
h solution of (8.2), we also define the discrete adjoint state zhu ∈ V

h as the
solution of

∫

D

∇η.∇zhudx = −

∫

D

(yhu − y
†)ηdx ∀η ∈ Vh, (8.3)

and we set ghu = −zhu + ν. Then one can check that Proposition 3.1, Corollary 3.2 and Proposition
3.4 remain valid by replacing yu, zu and gu by their discrete counterparts. In fact, ghu is the exact
sensitivity for the semi-discrete problem. Now, we associate to any continuous function ψ : D → R a
function uψ according to (4.1). Then Lemma 4.1 extends to the semi-discrete problem in the following
way.

Lemma 8.1. Let ψ ∈ C(D) be such that L2([ψ = 0]) = 0. Then uhψ is a global minimizer of (8.1)-(8.2)
if and only if, for all x ∈ D, there holds

{

ψ(x) > 0 ⇒ ghψ(x) ≥ 0,

ψ(x) < 0 ⇒ ghψ(x) ≤ 0.
(8.4)

Therefore, provided that L2([ghu = 0]) = 0 at the optimum, the optimal domain can be exactly
represented by a level set function ψ ∈ Vh (take ψ = ghu). Thus we restrict the search to level set
functions ψ ∈ Vh, resulting in a full discretization of the problem. For computing θ in (4.6), we endow
Vh with an arbitrary scalar product. The corresponding unit sphere of Vh is denoted by Sh.

Numerical algorithm

(1) Set n = 0, choose ψ0 ∈ S
h and a > 0.

(2) If L2([ψngψn < 0]) ≤ a then stop else set

ψn+1 = Cκn(ψn, g̃
h
ψn)

with some κn ∈ [0, 1] fixed by line search.
(3) Increment n← n+ 1 and goto (2).
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8.2. Line search. The initial step is chosen as κ0 = 1. Then, at iteration n ≥ 1, κn is fixed by the
following procedure.

(1) Initialize κn = min(1, κn−1 × 1.5).
(2) Loop while j(Cκn(ψn, g̃

h
ψn

)) > j(ψn)

κn ← κn/2.

End loop.

9. Numerical examples

In the subsequent computations, the computational domain is D = [−1, 1]× [0, 1] and the different
data and parameters are chosen as follows: u+ = 0, u− = 1, a = 10−3, ψ0 = −1/‖1‖. We use P1
finite elements with exact integration, and equip Vh with the L2 scalar product. We take as descent
direction the normalized sensitivity, i.e., g̃hu = ghu/‖g

h
u‖, and we do not perform any reinitialization.

The implementation is done under Matlab.
We present four computations, which differ by the value of ν, the function y† and the mesh used

(see Figures 1 through 4). The function y† is chosen among:

y†,1 = 0.05, y†,2(x1, x2) = 0.05 + 0.1 sin(πx1) sin(πx2).

Some numerical data are reported in Table 1. The value of θ indicated is the one obtained at conver-
gence. The CPU time is measured on a PC with 2.4 GHz processor.

Figure 1. Obtained domains at convergence for ν = 10−4, y† = y†,1: coarse mesh
(case 1, left) and fine mesh (case 2, right). The black region represents the set
[u = u−].

Figure 2. Level set function at convergence for case 2.

Case ν y† Nb. of nodes θ (degrees) CPU time (s)

1 10−4 y†,1 6521 0.027 18.5
2 10−4 y†,1 25841 0.095 112.8
3 2× 10−3 y†,1 25841 0.057 50.4
4 0 y†,2 25841 0.047 53.6

Table 1. Some numerical data.
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Figure 3. Convergence histories for the objective function j(ψn) (left) and the angle
θn expressed in degrees (right) for case 2.

Figure 4. Obtained domains for ν = 2 × 10−3, y† = y†,1 (case 3, left) and ν = 0,
y† = y†,2 (case 4, right).

Appendix A. Variation of integrals defined over level sets

The goal of this section is to provide a formula expressing the variation of an integral defined over
a level set when the level set function is perturbed. The general result is stated in Theorem A.3,
which expresses this variation as an integral. Then, we prove that, under additional assumptions, the
integrand is continuous (Proposition A.4), which leads to a differentiability result (Corollary A.5).

We begin by recalling a formula of change of variables, which is a consequence of the coarea formula
(see [13] Section 3.4.3).

Theorem A.1. Let ψ : R
n → R be Lipschitz, n ≥ 1. Then for each Ln-summable function f : R

n → R

there holds
∫

Rn

f |∇ψ|dx =

∫

R

[

∫

[ψ=s]

fdHn−1

]

ds.

Lemma A.2. Let t1 ≤ t2 and ψ : R
n → R be Lipschitz with

|∇ψ| ≥ m > 0 a.e. in A = [t1 ≤ ψ ≤ t2].

Then for each function f : R
n → R Ln-summable on A there holds

∫

A

fdx =

∫ t2

t1

[

∫

[ψ=s]

f

|∇ψ|
dHn−1

]

ds.

Proof. We define the auxiliary function

g =

{

|∇ψ| in A,
1 elsewhere.

We have obviously
∫

A

fdx =

∫

Rn

χA
f

g
|∇ψ|dx,

where χA is the characteristic function of A. The function χA
f
g is Ln-summable on R

n. Hence

Theorem A.1 entails
∫

A

fdx =

∫

R

[

∫

[ψ=s]

χA
f

g
dHn−1

]

ds =

∫ t2

t1

[

∫

[ψ=s]

f

|∇ψ|
dHn−1

]

ds.

�
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Theorem A.3. Let ψ,ϕ : R
n → R be Lipschitz and bounded with |∇ϕ| bounded. We assume that

there exist positive numbers m and η such that

|∇ψ| ≥ m Ln − a.e. in [|ψ| ≤ η]. (A.1)

Then for each function f : R
n → R Ln-summable the function

F : t 7→

∫

[ψ<tϕ]

fdx (A.2)

admits the variation

F (t)− F (0) =

∫ t

0

[

∫

[ψ=sϕ]

fϕ

|∇ψ − s∇ϕ|
dHn−1

]

ds

for all t in a neighborhood of 0.

Proof. Possibly making the splitting f = f+ − f−, where f+ and f− are the positive and negative
parts of f , respectively, we assume that f ≥ 0. We also assume that t > 0, the case t < 0 being
treated in a symmetric way and the case t = 0 being trivial. We split the proof in three steps.

(1) A straightforward calculation provides

F (t)− F (0) =

∫

[0≤ψ<tϕ]

fdx−

∫

[tϕ≤ψ<0]

fdx

=

∫

[ϕ>0 ∧ 0≤ψ
ϕ
<t]

fdx−

∫

[ϕ<0 ∧ 0<ψ
ϕ
≤t]

fdx.

We fix an arbitrary ε > 0 and define the function

θε =

{

ψ
ϕ if |ϕ| > ε,
ψ
ε if |ϕ| ≤ ε.

Then we write the decomposition

F (t)− F (0) = F1(ε, t) + F2(ε, t)− F3(ε, t)− F4(ε, t),

with

F1(ε, t) =

∫

[0≤θε<t]

fχ[ϕ>ε]dx , F2(ε, t) =

∫

[0<ϕ≤ε ∧ 0≤ψ
ϕ
<t]

fdx, (A.3)

F3(ε, t) =

∫

[0<θε≤t]

fχ[ϕ<−ε]dx , F4(ε, t) =

∫

[−ε≤ϕ<0 ∧ 0<ψ
ϕ
≤t]

fdx. (A.4)

(2) It is a simple exercise to check that the function θε is Lipschitz. Moreover, there exists a
positive constant λ independent of ε such that |θε| ≥ λ|ψ| provided that ε stays in a bounded
set, say ε ∈ (0, ε0). Hence, |∇ψ| ≥ m a.e. in [|θε| ≤ λη]. Next, we have

∇θε =











1

ϕ
(∇ψ − θε∇ϕ) a.e. in [|ϕ| > ε],

1

ε
∇ψ a.e. in [|ϕ| < ε].

In addition, we know that Ln([|ϕ| = ε]) = 0 for almost all ε ∈ (0, ε0). Indeed,
∫ ε0

0

Ln([|ϕ| = ε])dε =

∫ ε0

0

[
∫

Rn

χ[|ϕ|=ε]dx

]

dε =

∫

Rn

[
∫ ε0

0

χ{|ϕ(x)|}dε

]

dx = 0.

We assume that ε is appropriately chosen. We deduce that |∇θε| ≥ µ > 0 a.e. in [|θε| ≤ t],
provided that t is small enough, say t ≤ t0, with t0 independent of ε. By Lemma A.2, there
holds

F1(ε, t)− F3(ε, t) =

∫ t

0

[

∫

[θε=s]

fχ[ϕ>ε]

|∇θε|
dHn−1

]

ds−

∫ t

0

[

∫

[θε=s]

fχ[ϕ<−ε]

|∇θε|
dHn−1

]

ds.

In both integrands there holds θε = ψ/ϕ = s and

∇θε =
∇ψ − s∇ϕ

ϕ
.



14

It comes

F1(ε, t)−F3(ε, t) =

∫ t

0

[

∫

[ψ=sϕ]

fϕχ[ϕ>ε]

|∇ψ − s∇ϕ|
dHn−1

]

ds+

∫ t

0

[

∫

[ψ=sϕ]

fϕχ[ϕ<−ε]

|∇ψ − s∇ϕ|
dHn−1

]

ds. (A.5)

By using the expressions (A.3) and (A.4), it turns out that each term in (A.5) is bounded in
absolute value by

∫

Rn
fdx. By the monotone convergence theorem, we obtain

lim
ε→0

F1(ε, t)− F3(ε, t) =

∫ t

0

[

∫

[ψ=sϕ]

fϕχ[ϕ>0]

|∇ψ − s∇ϕ|
dHn−1

]

ds+

∫ t

0

[

∫

[ψ=sϕ]

fϕχ[ϕ<0]

|∇ψ − s∇ϕ|
dHn−1

]

ds

=

∫ t

0

[

∫

[ψ=sϕ]

fϕ

|∇ψ − s∇ϕ|
dHn−1

]

ds.

(3) Besides, we have

|F2(ε, t)− F4(ε, t)| ≤

∫

[|ψ|≤tε]

|f |dx =

∫

Rn

χ[|ψ|≤tε]|f |dx.

Yet, since Ln([ψ = 0]) = 0 (which can be deduced from Lemma A.2 but is quite obvious in
view of (A.1)), there holds limε→0 χ[|ψ|≤tε] = 0 a.e. in R

n. Hence the dominated convergence
theorem yields

lim
ε→0

F2(ε, t)− F4(ε, t) = 0,

which completes the proof.

�

Proposition A.4. Let D be an open and bounded subset of R
2 and ψ,ϕ : D → R be two functions

of class C1. We assume that [ψ = 0] ⊂⊂ D and ∇ψ does not vanish on [ψ = 0]. Let f : D → R be

continuous in the vicinity of [ψ = 0]. Then the function

G : t 7→

∫

[ψ=tϕ]

fdH1

is continuous in the vicinity of 0.

Proof. By the implicit function theorem together with the compactness of the set [ψ = 0], there
exist a family of open sets (Vi)i=1,...,N , a positive number t̄ and C1 functions Φi : R → R such that
∪Ni=1Vi ⊃ Ā, where A is an open tubular neighborhood of [ψ = 0], and

∀i = 1, ..., N, ∀(x, t) ∈ Vi × (−t̄, t̄), ψ(x) = tϕ(x)⇔ x2 = Φi(x1, t)

Here, (x1, x2) stands for the representation of x in an appropriate local Cartesian coordinate system.
Also, by compactness of D̄ \A and continuity of ψ and ϕ, for t sufficiently small, ψ(x) = tϕ⇒ x ∈ A.
We adjust t̄ in this respect. Now, let (ηi)i=0,...,N be a partition of unity of Ā subordinate to the cover
(Vi)i=0,...,N . We have for all t ∈ (−t̄, t̄)

G(t) =

N
∑

i=1

∫

[ψ=tϕ]

ηifdH
1 =

N
∑

i=1

∫

R

(ηif)(x1,Φi(t, x1))

√

1 +
∂Φi
∂x1

(t, x1)2dx1.

We deduce the continuity of G by standard arguments. �

Corollary A.5. Let ψ, ϕ, f be functions satisfying the assumptions of Proposition A.4, with f L2-

summable in D. Then the function F defined by (A.2) is differentiable in a neighborhood of 0. In

particular,

F ′(0) =

∫

[ψ=0]

fϕ

|∇ψ|
ds.

Proof. By Theorem A.3, we have for all t in a neighborhood of 0

F (t)− F (0) =

∫ t

0

G(s)ds,

with

G(s) =

∫

[ψ=sϕ]

fϕ

|∇ψ − s∇ϕ|
dH1.
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With the help of Proposition A.4, we obtain that G is continuous in a neighborhood of 0, which
straightforwardly yields the result. �
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