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Abstract. Algorithmic aspects for the solution of topological shape optimization problems subject
to a cone constraint are addressed in this paper. In this framework, an augmented Lagrangian

method based on the concept of topological derivative is proposed. It is illustrated by some numerical
experiments in structural optimization with compliance and eigenfrequency constraints and multiple
loads.

1. Introduction

This paper deals with the construction of numerical methods for the topological optimization of
domains in the presence of constraints. The problem of interest can be stated as follows. Let D be a
domain of R

d, d = 2 or d = 3 (computational domain), E be a set of subdomains of D, and K be a
closed convex cone of a Banach space Y . We are given two functionals

J : E → R,
Ω 7→ J(Ω),

G : E → Y,
Ω 7→ G(Ω).

Our purpose is to solve the minimization problem

min
Ω∈Ead

J(Ω), (1.1)

where the feasible set is defined by

Ead = {Ω ∈ E , G(Ω) ∈ −K}.

Several methods have been developed to approximate this problem by a differentiable optimization
problem, that can be handled by standard optimization algorithms. The most popular one, at least
as far as industrial applications are concerned, is the parametric shape optimization method, which
takes the CAD parameters as design variables (see, e.g., [2] and the references therein). It enables in
particular a straightforward implementation of second order methods, like Newton’s method or the
SQP algorithm. However the set of attainable domains is restricted by the parametrization. In order
to enlarge this set, many authors appeal to relaxation methods, like the homogenization [13, 1] or
SIMP [14, 24]. These methods have the converse drawback: they lead to unfeasible domains, made of
intermediate or composite material. Finally, one has to mention the shape derivative approach [25, 31],
which is based on the sensitivity analysis with respect to boundary perturbations. Nevertheless, as
the differentiation is not computed with respect to the global design variables, the algorithmic issue
remains nontrivial, especially in the constrained case [20]. In addition, topology variations are not
permitted in this context. More flexibility can be obtained by combining the shape derivative and a
level-set domain representation [5, 32].

In this paper, we follow another approach which relies on the topological sensitivity analysis [21,
23, 29, 22, 26, 30, 9, 8]. The topological derivative, also called topological gradient, of a shape
functional J at some point x of the domain is a number g(x) which measures the first variation of
J with respect to a topology perturbation localized around x, typically the nucleation of a small
hole. In the unconstrained situation, the nonnegativity of g(x) at every point of Ω is an obvious
necessary minimality condition. Some algorithms have been devised on the basis of the solution of
this condition by means of fixed point type methods [23, 10]. Some others combine the shape and
topological derivatives within a level-set formalism [3, 16]. By construction, all these algorithms allow
topology changes without introducing unfeasible material. In the cone constrained case described
above, one proves that a necessary optimality condition can be written in terms of the nonnegativity of
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the topological derivative of a Lagrangian functional, together with a complementarity condition [11].
The present paper aims at providing algorithms dedicated to the solution of this optimality condition.
We focus on first order methods, since the first order topological derivative of the Lagrangian does
not have to vanish at the optimum.

The paper is organized as follows. The notations concerning the topology perturbations and the
associated topological derivatives are specified in Section 2. The optimality conditions are recalled in
Section 3. In Sections 4, we prove that local optima correspond to local saddle points of the Lagrangian.
We show in Section 5 that the augmented Lagrangian enjoys similar properties. Therefore we propose
in Section 6 to adapt the Uzawa algorithm to these two Lagrangians. Section 7 is devoted to a first
series of numerical examples dealing with structural optimization with compliance and eigenfrequency
constraints. Other examples in the context of multiple loads are treated in Section 8.

2. Topological sensitivity

Starting from an arbitrary domain Ω ∈ E and given

• a family of points z = (z1, ..., zN ) ∈ (D \ ∂Ω)N , N ∈ N,
• a family of radii ρ = (ρ1, ..., ρN ) ∈ R

N
+ ,

we define the perturbed domain

Ωz,ρ = Ω ∪
⋃

zi∈D\Ω

B(zi, ρi) \
⋃

zi∈Ω

B(zi, ρi),

with B(zi, ρi) = {x ∈ R
d, |x−zi| < ρi} and |.| the canonical Euclidean norm of R

d. To assure that the
perturbed domain remains in E as soon as the radii are small enough, it may be necessary to restrict
the centers to some subset T (Ω) of D\∂Ω. Thus we assume that, for all family z = (z1, ..., zN ) ∈ T (Ω),
there exists ρ0 > 0 such that

ρ ∈ [0, ρ0]
N ⇒ Ωz,ρ ∈ E .

The first variation of the objective and constraint functionals with respect to such perturbations is
expressed by the following assumption.

Assumption 2.1. For every domain Ω ∈ E , there exist two functions J ′(Ω) : D → R and G′(Ω) : D →
Y as well as a homeomorphism f of R+ into itself with f(0) = 0 such that, for all (z, ρ) ∈ T (Ω)N×R

N
+ ,

N ∈ N, the following asymptotic expansions hold:

J(Ωz,ρ)− J(Ω) =

N
∑

i=1

f(ρi)J
′(Ω)(zi) + o(f(ρ1), ..., f(ρN )),

G(Ωz,ρ)−G(Ω) =

N
∑

i=1

f(ρi)G
′(Ω)(zi) + o(f(ρ1), ..., f(ρN )). (2.1)

We refer the reader, e.g., to the papers [23, 29, 22, 26, 9, 8] for some examples of such expansions.
These papers focus on a single perturbation (N = 1), but the additive behavior is natural and it is
proved in some cases (see, e.g., [30, 11, 12]).

For convenience we introduce the cone Q(Ω) of all functions ϕ : T (Ω) → R+ with finite support,
i.e., for which the set {x ∈ T (Ω), ϕ(x) 6= 0} consists of a finite number of points. For all ϕ ∈ Q(Ω)
and all function ψ defined in T (Ω) with values in an arbitrary set, we define the pairing

[ψ,ϕ] =
∑

z∈T (Ω)

ϕ(z)ψ(z).

Also, we define for all ϕ ∈ Q(Ω) the domain

Ωϕ = Ω ∪
⋃

z∈D\Ω

B(z, f−1 ◦ ϕ(z)) \
⋃

z∈Ω

B(z, f−1 ◦ ϕ(z)).

We derive straightforwardly the following proposition.

Proposition 2.2. For all η ∈ Q(Ω) and all t > 0 sufficiently small, we have

J(Ωtη)− J(Ω) = t[J ′(Ω), η] + o(t), (2.2)

G(Ωtη)−G(Ω) = t[G′(Ω), η] + o(t). (2.3)
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3. Optimality condition

Definition 3.1. We say that a domain Ω ∈ E is a local minimizer of (1.1) (for the considered class
of perturbations) if Ω ∈ Ead and, for all η ∈ Q(Ω), there exists t0 > 0 such that

∀t ∈ [0, t0], Ωtη ∈ Ead ⇒ J(Ω) ≤ J(Ωtη). (3.1)

In particular, this condition will be satisfied if Ω ∈ Ead and, for all z ∈ T (Ω)N , N ∈ N, there exists
ρ0 > 0 such that

∀ρ ∈ [0, ρ0]
N , Ωz,ρ ∈ Ead ⇒ J(Ω) ≤ J(Ωz,ρ).

Definition 3.2. We say that a domain Ω ∈ Ead satisfies the constraint qualification condition if there
exists η ∈ Q(Ω) such that

G(Ω) + [G′(Ω), η] ∈ int(−K).

Equivalently, this amounts to say that there exists (z1, ..., zN ) ∈ T (Ω)N , N ∈ N, and (λ1, ..., λN ) ∈ R
N
+

such that

G(Ω) +

N
∑

i=1

λiG
′(Ω)(zi) ∈ int(−K).

The following notations will be used in the sequel: Y ′ stands for the continuous dual space of Y ,
〈., .〉Y ′,Y is the corresponding duality pairing, and K+ is the positive dual cone of K, i.e.,

K+ = {µ ∈ Y ′, 〈µ, y〉Y ′,Y ≥ 0 ∀y ∈ K}.

As K is convex and closed, we have the classical identity

K = {y ∈ Y, 〈µ, y〉Y ′,Y ≥ 0 ∀µ ∈ K+}. (3.2)

The following result is proved in [11].

Theorem 3.3. Let Ω be a local minimizer of (1.1) satisfying the constraint qualification condition.
Then there exists µ ∈ K+ such that:

J ′(Ω)(x) + µ ◦G′(Ω)(x) ≥ 0 ∀x ∈ T (Ω), (3.3)

〈µ,G(Ω)〉Y ′,Y = 0. (3.4)

4. Lagrangian functional and saddle points

We define the Lagrangian functional L : E × Y ′ → R in the classical way:

L(Ω, µ) = J(Ω) + 〈µ,G(Ω)〉Y ′,Y .

We refer e.g. to [17] for a detailed description of the Lagrangian formalism, and to [19] for its
application in shape optimization.

Definition 4.1. We say that the pair (Ω, µ) ∈ E ×K+ is a local saddle point of L on E ×K+ if, for
all η ∈ Q(Ω), there exists t0 > 0 such that

L(Ω, µ′) ≤ L(Ω, µ) ≤ L(Ωtη, µ) ∀(t, µ′) ∈ [0, t0]×K
+. (4.1)

The following theorem shows a first relation between local minimizers and local saddle points.

Theorem 4.2. Consider a pair (Ω, µ) ∈ Ead ×K
+ satisfying

J ′(Ω)(x) + µ ◦G′(Ω)(x) > 0 ∀x ∈ T (Ω),

〈µ,G(Ω)〉Y ′,Y = 0. (4.2)

Then (Ω, µ) is a local saddle point of L on E ×K+.

Proof. (1) We begin by checking the first inequality in (4.1). In view of (4.2), we have that
L(Ω, µ) = J(Ω). Thus, for all µ′ ∈ Y ′,

L(Ω, µ′)− L(Ω, µ) = 〈µ′, G(Ω)〉Y ′,Y .

Since G(Ω) ∈ −K, this quantity is nonpositive whenever µ′ ∈ K+.
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(2) We turn to the second inequality. From the definition of the Lagrangian functional and
Proposition 2.2 we derive:

L(Ωtη, µ)− L(Ω, µ) = J(Ωtη)− J(Ω) + 〈µ,G(Ωtη)−G(Ω)〉Y ′,Y

= t [J ′(Ω) + µ ◦G′(Ω), η] + o(t).

With the assumptions made, [J ′(Ω) + µ ◦G′(Ω), η] > 0 as soon as η is not identically zero,
which provides the desired inequality.

�

We now examine a converse of Theorem 4.2.

Theorem 4.3. Let (Ω, µ) be a local saddle point of L on E × K+. Then Ω is a local minimizer of
(1.1). Moreover, (3.3) and (3.4) hold true.

Proof. (1) By exploiting the first inequality in (4.1), we derive that

〈µ′ − µ,G(Ω)〉Y ′,Y ≤ 0 ∀µ′ ∈ K+.

Taking µ′ = 0 then µ′ = 2µ yields

〈µ,G(Ω)〉Y ′,Y = 0.

Therefore we have
〈µ′, G(Ω)〉Y ′,Y ≤ 0 ∀µ′ ∈ K+.

By (3.2), this entails G(Ω) ∈ −K, i.e., Ω ∈ Ead.
(2) Consider a perturbed domain Ωtη ∈ Ead. We have

〈µ,G(Ωtη)−G(Ω)〉Y ′,Y = 〈µ,G(Ωtη)〉Y ′,Y ≤ 0,

because µ ∈ K+ and G(Ωtη) ∈ −K. Therefore,

J(Ωtη)− J(Ω) ≥ L(Ωtη, µ)− L(Ω, µ).

According to the second inequality in (4.1), the right hand side is nonnegative provided that
t is sufficiently small. We conclude that Ω is a local minimizer of (1.1).

(3) It remains to prove (3.3). To do so, we take an arbitrary perturbation η ∈ Q(Ω). From the
second inequality in (4.1) together with (2.2) and (2.3), it comes

t[J ′(Ω) + µ ◦G′(Ω), η] + o(t) ≥ 0

for all t sufficiently small. Dividing by t > 0 and passing to the limit when t goes to zero
completes the proof.

�

5. Augmented Lagrangian

The augmented Lagrangian can be introduced in different ways. Here we partly follow the presen-
tation of [18], with adaptation to our context. We assume that Y is a Hilbert space and we identify
Y ′ with Y and the duality pairing 〈., .〉Y ′,Y with the scalar product of Y . Given a positive parameter
b, we define the augmented Lagrangian functional Lb : E × Y ′ → R by:

Lb(Ω, µ) = J(Ω) + ζb(G(Ω), µ)

where, for all y ∈ Y , ζb(y, .) is the concave Moreau-Yosida transform of 〈y, .〉 with constant 1/b over
K+, i.e.,

ζb(y, µ) = sup
µ′∈K+

(

〈y, µ′〉 −
1

2b
‖µ− µ′‖2

)

. (5.1)

We denote by PK+ the projection operator from Y onto the closed convex set K+, and by dK+ the
Euclidean distance operator to K+. A proof of the following lemma can be found in [15].

Lemma 5.1. The function v : y ∈ Y 7→
1

2
dK+(y)2 is continuously differentiable with gradient

∇v(y) = y − PK+(y).

The following theorem provides explicit expressions of the function ζb along with its derivatives.
Although these results are classical, we briefly give a proof for completeness.
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Theorem 5.2. (1) At all pair (y, µ) ∈ Y × Y the function ζb admits the expressions

ζb(y, µ) =
1

2b

(

‖PK+(µ+ by)‖2 − ‖µ‖2
)

(5.2)

= 〈µ, y〉+
b

2
‖y‖2 −

1

2b
dK+(µ+ by)2. (5.3)

(2) For all µ ∈ Y , the function ζb(., µ) is differentiable on Y with gradient

∇yζb(y, µ) = PK+(µ+ by). (5.4)

For all y ∈ Y , the function ζb(y, .) is differentiable on Y with gradient

∇µζb(y, µ) =
1

b
(PK+(µ+ by)− µ) . (5.5)

Proof. (1) It comes by standard arguments that the supremum in (5.1) is attained at some unique
point µ̂ ∈ K+, and that a necessary first order optimality condition reads

〈y +
1

b
(µ− µ̂), µ′ − µ̂〉 ≤ 0 ∀µ′ ∈ K+.

As b > 0, this inequality can be equivalently rewritten as

〈by + µ− µ̂, µ′ − µ̂〉 ≤ 0 ∀µ′ ∈ K+.

Hence µ̂ = PK+(by + µ). Reporting this expression into (5.1) results in

ζb(y, µ) = 〈y, PK+(by + µ)〉 −
1

2b
‖µ− PK+(by + µ)‖2

= 〈y +
1

b
µ, PK+(by + µ)〉 −

1

2b
‖µ‖2 −

1

2b
‖PK+(by + µ)‖2.

Since K+ is a cone, the first term is equal to twice the latter. Formula (5.2) follows. For every
x ∈ Y , we have

dK+(x)2 = ‖PK+(x)− x‖2 = ‖PK+(x)‖2 + ‖x‖2 − 2〈PK+(x), x〉 = −‖PK+(x)‖2 + ‖x‖2,

where the latter equality stems again from the cone property. The above relation provides
straightforwardly the equality between (5.2) and (5.3).

(2) Starting from (5.3) and differentiating with respect to y and µ by using Lemma 5.1 yields
(5.4) and (5.5), respectively.

�

The following properties are also classical, apart from the fact that the Moreau-Yosida regularization
is here computed in a cone. Therefore we provide a short proof.

Lemma 5.3. (1) For all (y, µ) ∈ Y ×K+, we have

〈y, µ〉 ≤ ζb(y, µ).

(2) For all y ∈ Y , we have

sup
µ∈K+

〈y, µ〉 = sup
µ∈Y

ζb(y, µ).

(3) For all y ∈ −K, the above suprema are attained and

argmax
µ∈K+

〈y, µ〉 = argmax
µ∈Y

ζb(y, µ).

Proof. (1) Taking µ′ = µ in (5.1) provides straightforwardly the first inequality.
(2) The second inequality is obtained by writing

sup
µ∈Y

ζb(y, µ) = sup
µ∈Y

sup
µ′∈K+

(

〈y, µ′〉 −
1

2b
‖µ− µ′‖2

)

= sup
µ′∈K+

sup
µ∈Y

(

〈y, µ′〉 −
1

2b
‖µ− µ′‖2

)

= sup
µ′∈K+

〈y, µ′〉.
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(3) As y ∈ −K, 〈y, µ〉 ≤ 0 for all µ ∈ K+. Hence supµ∈K+〈y, µ〉 is attained at µ = 0. Consider
some µ̂ ∈ argmaxµ∈K+〈y, µ〉. Then 〈y, µ̂〉 = supµ∈K+〈y, µ〉 = supµ∈Y ζb(y, µ) ≥ ζb(y, µ̂) ≥
〈y, µ̂〉. Therefore all the inequalities are equalities, in particular supµ∈Y ζb(y, µ) = ζb(y, µ̂).
This entails µ̂ ∈ argmaxµ∈Y ζb(y, µ). Conversely, consider µ̂ ∈ argmaxµ∈Y ζb(y, µ). Then
ζb(y, µ̂) = supµ∈Y ζb(y, µ) = supµ∈K+〈y, µ〉 = 0. Yet, the supremum in (5.1) is attained:

there exists µ′ ∈ K+ such that

〈y, µ′〉 −
1

2b
‖µ̂− µ′‖2 = ζb(y, µ̂) = 0.

Both terms in the left hand side are nonpositive, hence µ̂ = µ′ ∈ K+ and 〈y, µ̂〉 = 0 =
supµ∈K+〈y, µ〉. Therefore µ̂ ∈ argmaxµ∈K+〈y, µ〉.

�

We are now in position to prove the main theorem of this section.

Theorem 5.4. (1) If (Ω, µ) is a local saddle point of L on E ×K+, then (Ω, µ) is a local saddle
point of Lb on E × Y and Lb(Ω, µ) = L(Ω, µ).

(2) If (Ω, µ) is a local saddle point of Lb on E × Y , then (Ω, µ) ∈ Ead ×K
+ and (3.3)-(3.4) are

satisfied. Moreover, Lb(Ω, µ) = L(Ω, µ).

Proof. (1) We assume that (Ω, µ) is a local saddle point of L on E ×K+. According to Theorem
4.3, we have G(Ω) ∈ −K. Next, the function µ′ ∈ K+ 7→ L(Ω, µ′) attains its maximum at µ.
Hence, by Lemma 5.3, the function µ′ ∈ Y 7→ Lb(Ω, µ

′) attains its maximum at µ as well and

Lb(Ω, µ) = L(Ω, µ). (5.6)

In other words,
Lb(Ω, µ

′) ≤ Lb(Ω, µ) ∀µ′ ∈ Y.

We now turn to the second inequality. Given a perturbation η ∈ Q(Ω) there exists t0 > 0
such that L(Ω, µ) ≤ L(Ωtη, µ) for all t ≤ t0. Lemma 5.3 implies that L(Ωtη, µ) ≤ Lb(Ωtη, µ),
which, together with (5.6), yields

Lb(Ω, µ) ≤ Lb(Ωtη, µ) ∀t ≤ t0.

(2) We assume now that (Ω, µ) is a local saddle point of Lb on E ×Y . As Lb is differentiable with
respect to µ, we have ∇µLb(Ω, µ) = 0. Thus, ∇µζb(G(Ω), µ) = 0. Then, using (5.5), it comes

PK+(µ+ bG(Ω)) = µ. (5.7)

We deduce that µ ∈ K+. Moreover, µ satisfies

〈(µ+ bG(Ω))− µ, y − µ〉 ≤ 0 ∀y ∈ K+. (5.8)

Taking y = 0 then y = 2µ entails 〈G(Ω), µ〉 = 0. Consequently, (5.8) reduces to

〈G(Ω), y〉 ≤ 0 ∀y ∈ K+,

which implies that G(Ω) ∈ −K. Next, arguing that the function µ′ ∈ Y 7→ ζb(G(Ω), µ′)
attains its maximum at µ, Lemma 5.3 yields

L(Ω, µ′) ≤ L(Ω, µ) = Lb(Ω, µ) ∀µ′ ∈ K+.

Using (5.4) and (5.7), it comes ∇yζb(G(Ω), µ) = µ. From the second inequality in (4.1) for Lb

we obtain that, for any perturbation η ∈ Q(Ω) and any t ≥ 0 sufficiently small,

J(Ωtη)− J(Ω) + ζb(G(Ωtη), µ)− ζb(G(Ω), µ) ≥ 0.

Next, using the differentiability of ζb it comes

J(Ωtη)− J(Ω) + 〈∇yζb(G(Ω), µ), G(Ωtη)−G(Ω)〉+ o(‖G(Ωtη)−G(Ω)‖) ≥ 0. (5.9)

It stems from (2.3) that ‖G(Ωtη) − G(Ω)‖ = O(t). Then, taking into account the equality
∇yζb(G(Ω), µ) = µ, (5.9) yields

lim
t→0

J(Ωtη)− J(Ω) + 〈µ,G(Ωtη)−G(Ω)〉

t
≥ 0.

Thus Proposition 2.2 leads to [J ′(Ω) + µ ◦G′(Ω), η] ≥ 0. Since this inequality holds for every
η ∈ Q, we deduce that J ′(Ω)(x) + µ ◦G′(Ω)(x) ≥ 0 for all x ∈ T (Ω).
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�

We shall now synthesize the obtained results. Gathering Theorems 3.3, 4.2, 4.3 and 5.4 leads to
the following relations.

Theorem 5.5. Consider a domain Ω ∈ E satisfying

J ′(Ω)(x) + µ ◦G′(Ω)(x) 6= 0 ∀x ∈ T (Ω). (5.10)

The following statements are equivalent (for the third one it is required that Y is a Hilbert space).

(1) The domain Ω is a local minimizer of (1.1). Moreover, there exists a Lagrange multiplier
µ ∈ K+ such that (3.3)-(3.4) hold true (which is automatically satisfied if the constraint
qualification condition is fulfilled).

(2) The pair (Ω, µ) is a local saddle point of the Lagrangian L on E ×K+.
(3) The pair (Ω, µ) is a local saddle point of the augmented Lagrangian Lb on E × Y .

We point out that the condition (5.10) is in practice rather mild. It can be simply bypassed by
removing the vanishing set from T (Ω), which amounts to restrict the class of perturbations in the
definition of local optimal domains.

6. Algorithm

In view of Theorem 5.5, the search for a local minimizer of (1.1) is replaced by the search for a
local saddle point of the Lagrangian (possibly augmented). In the spirit of the Uzawa algorithm, we
will alternatively perform a minimization with respect to the domain, and make a gradient step in
the dual direction. Since in the numerical applications the space of constraints Y is, after possible
discretization, of finite dimension, we assume in this section that Y is a Hilbert space and we identify Y
with Y ′. We recall that PK+ denotes the projection operator from Y ontoK+. In the case of inequality
constraints, this operator consists in taking the positive part of a vector, which is particularly easy to
implement.
Algorithm 1 (ordinary Lagrangian)

(1) Choose Ω0 ∈ E and µ0 ∈ K
+. Set k = 0. Fix τ > 0 and εstop > 0.

(2) Starting from Ωk, find a local minimizer Ωk+1 of the problem

min
Ω∈E

L(Ω, µk).

(3) Set µk+1 = PK+(µk + τG(Ωk+1)).
(4) If ‖µk+1 − µk‖ ≤ εstop then stop else increment k ← k + 1 and goto (2).

Algorithm 2 (augmented Lagrangian)

(1) Choose Ω0 ∈ E and µ0 ∈ Y . Set k = 0. Fix b > 0, τ > 0 and εstop > 0.
(2) Starting from Ωk, find a local minimizer Ωk+1 of the problem

min
Ω∈E

Lb(Ω, µk). (6.1)

(3) Set µk+1 = µk +
τ

b
[PK+(µk + bG(Ωk+1))− µk].

(4) If ‖µk+1 − µk‖ ≤ εstop then stop else increment k ← k + 1 and goto (2).

It turns out that, like in differentiable optimization, the second algorithm is generally much faster.
It has another advantage: the stepsize τ , rather arbitrary in the first algorithm, is usually chosen equal
to b (see, e.g., [15]). However, choosing an adequate value for b may require a few tests, because taking
it too large makes Problem (6.1) ill-conditioned. This phenomenon is generally clearly observable after
a few iterations.

In order to solve the unconstrained minimization problem for the (augmented) Lagrangian (step
2 in both algorithms), we use the algorithm described in [10]. It roughly works as follows. Every
domain Ω is represented by a function ψ : D → R such that Ω(ψ) = {x ∈ D,ψ(x) < 0} and

D \ Ω(ψ) = {x ∈ D,ψ(x) > 0}. The algorithm is based on the solving of the sufficient optimality
condition at µ fixed:

g̃(Ω(ψ)) ∼ ψ,

with

g̃(Ω)(x) =

{

−[J ′(Ω)(x) + µ ◦G′(Ω)(x)] if x ∈ Ω,
J ′(Ω)(x) + µ ◦G′(Ω)(x) if x ∈ D \ Ω,
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ψ1 ∼ ψ2 ⇐⇒ ∃α > 0, ψ1 = αψ2.

A fixed point type method on the unit sphere {ψ ∈ L2(D), ‖ψ‖L2(D) = 1} is applied. At convergence,
the mesh may be automatically locally refined by means of a posteriori error estimates if the above
optimality condition is not satisfactorily met, namely the angle between the level-set function ψ and
the signed topological derivative g̃(Ω(ψ)) is greater than 5 degrees.

In the next two sections, we consider structural optimization problems with constraints on the
compliance and eigenfrequencies. We show results obtained by using the augmented Lagrangian only.
We do not attempt to illustrate the superiority of this latter on the ordinary Lagrangian. We justify
this choice by two reasons. Firstly, topology optimization problems are usually severely ill-posed, in
the sense that they possess many local minima and no global minimum. Therefore two algorithms often
lead to two different solutions. Secondly, we have observed in our context the well-known advantages
of the augmented Lagrangian, namely it permits a smooth convergence of the Lagrange multiplier for
a larger stepsize.

In the subsequent examples, E contains all subsets of D, and Ω0 = D (full domain initialization).

7. Numerical examples in structural optimization with a constraint on the first

eigenfrequency

7.1. Problem statement. We consider the following optimum design problem in plane stress lin-
earized elasticity: minimize the area of the domain with an upper bound on the compliance and a lower
bound on the first eigenfrequency. We assume that the boundary ∂D of the computational domain
D consists of three disjoint parts ΓF , Γ0 and ΓD, with meas(ΓD) > 0. Given a load F ∈ H−1/2(ΓF ),
the state equations for the displacement field uΩ read:















−div σΩ(uΩ) = 0 in D,
σΩ(uΩ)n = F on ΓF ,
σΩ(uΩ)n = 0 on Γ0,

uΩ = 0 on ΓD.

Here, σΩ(u) stands for the stress tensor, which depends linearly on the spatial derivatives of the
displacement u through the Hooke law. The Young modulus is chosen equal to 1 in Ω and εs = 10−3

in D \Ω. The Poisson ratio is equal to 0.3 everywhere in D. The vector n is the outward unit normal
to ∂D. The compliance is computed by

CΩ =

∫

ΓF

F.uΩds,

the integral symbol being used for readability to denote the duality pairing between H−1/2(ΓF ) and
H1/2(ΓF ). The first eigenfrequency ΛΩ and the associated eigenfunction vΩ solve:















−div σΩ(vΩ) = ΛΩγΩvΩ in D,
σΩ(vΩ)n = 0 on ΓF ,
σΩ(vΩ)n = 0 on Γ0,

vΩ = 0 on ΓD.

Following [4], the density γΩ is taken equal to 1 in Ω and εd = 10−6 in D \ Ω in order to avoid
undesirable eigenmodes localized in the weak phase. Given two positive numbers Cmax and Λmin, we
define two constraint functionals:

G1(Ω) = CΩ − Cmax, G2(Ω) = Λmin − ΛΩ.

Thus the problem under investigation can be written

min
Ω∈E

J(Ω) = |Ω| subject to (G1(Ω), G2(Ω)) ∈ R− × R−.

We do not impose any restriction on the topology perturbations, i.e., T (Ω) = D\∂Ω. The topological
sensitivity of the objective functional is obvious, namely:

f(ρ) = πρ2, J ′(Ω)(x) =

{

−1 if x ∈ Ω,
1 if x ∈ D \ Ω.
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For the compliance, we have:

CΩz,ρ
− CΩ =

N
∑

i=1

πρ2
iC

′
Ω(uΩ)(zi) + o(ρ2), (7.1)

with

C ′
Ω(uΩ) =







1−εs

κεs+1
κ+1

2

[

2σΩ(uΩ) : e(uΩ) + (εs−1)(κ−2)
κ+2εs−1 trσΩ(uΩ)tre(uΩ)

]

in Ω,

− 1−εs

κ+εs

κ+1
2

[

2σΩ(uΩ) : e(uΩ) + (1−εs)(κ−2)
κεs+2−εs

trσΩ(uΩ)tre(uΩ)
]

in D \ Ω.

In the above expression,

κ =
λL + 3µL

λL + µL

where λL, µL denote the Lamé coefficients of the material, and e stands for the strain tensor. This
expression is established in [8] for a single inclusion. The extension to multiple inclusions can be
derived by arguing like in [11] (see also [30, 12] for the creation of holes). The topological derivative
for simple eigenvalues of the Laplacian is obtained in [7] (see [27, 28] for the generalization to multiple
eigenvalues and other types of singular domain perturbations). The polarization tensor formalism en-
ables straightforward extensions of this result to other linear elliptic operators. In the linear elasticity
case, using the polarization tensor given in [6], we obtain

ΛΩz,ρ
− ΛΩ =

N
∑

i=1

πρ2
i Λ

′
Ω(vΩ)(zi) + o(ρ2), (7.2)

with

Λ′
Ω(vΩ) =

−C ′
Ω(vΩ)− ΛΩs(1− εd)|vΩ|

2

∫

D
γΩ|vΩ|2

,

s(x) =

{

−1 if x ∈ Ω,
1 if x ∈ D \ Ω.

7.2. Mast. The first example is the classical mast problem. The geometry and the boundary condi-
tions are sketched on Figure 1 (left). To begin with, we only consider a constraint on the compliance,
which has to be less than 80. We choose the augmentation parameter b = 5.10−3. We obtain the
domain depicted on Figure 1 (middle), after a computation using 268s of CPU time on a PC with
2.4 GHz processor. The compliance of this domain is CΩ = 80.3 and the first eigenfrequency is
ΛΩ = 2.1 10−4. Convergence histories are provided on Figure 2, in which the horizontal axis repre-
sents the number of iterations, an iteration corresponding to one step in the solving of (6.1). Note
that this computer time contains a large part of eigenvalue analysis, even if the eigenvalues are not
taken into account in this computation.

Figure 1. Mast: boundary conditions (left), obtained design with compliance con-
straint (middle), and mesh (4891 nodes, right).
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Figure 2. Mast with compliance constraint: convergence histories for the area (left),
the compliance (middle) and the Lagrange multiplier (right).

We now consider the additional constraint ΛΩ ≥ 2.10−3. We use the augmentation parameters
bC = 5.10−3 for the compliance and bΛ = 106 for the first eigenfrequency. Constraints of different
natures and different scales should indeed be handled with different augmentation parameters. The
theory developed before can be easily extended to this situation. We obtain a domain such that
CΩ = 80.3 and ΛΩ = 1.98 10−3 (see Figures 3 and 4, 389s of CPU time). Note that the first
eigenfrequency remains simple throughout the optimization process. Clearly, this mast is much more
robust than the previous one with respect to bending around the vertical axis of symmetry.

Figure 3. Mast with compliance and eigenfrequency constraints and mesh (5919 nodes).
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Figure 4. Mast with compliance and eigenfrequency constraints. Top: convergence
histories for the area, the compliance and the Lagrange multiplier for the compliance.
Bottom: first two eigenfrequencies and Lagrange multiplier for the first eigenfre-
quency.
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7.3. Long cantilever. We consider now the long cantilever problem (see Figure 5, left). The com-
pliance must be less than 100 and the first eigenfrequency more than 0.12. We use the augmentation
parameters bC = 5.10−4 and bΛ = 200. We obtain a structure with compliance CΩ = 100.1 and first
eigenfrequency ΛΩ = 0.1196 after a computation of 323s (see Figures 5 and 6).

Figure 5. Cantilever with compliance and eigenfrequency constraints.
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Figure 6. Cantilever: convergence histories for the compliance (left) and the first
two eigenfrequencies (right).

8. Numerical examples in structural optimization with multiple loads

8.1. General setting. We consider again a computational domain D occupied by a two phase elastic
material. The geometrical requirements and the elastic properties are the same as before. Now, the
structure is subject to a family of loads (Fξ)ξ∈I , where the index set I is a compact subset of R.
Denoting by uΩ,ξ the displacement field associated with the domain Ω and the load Fξ, the governing
equations read:















−div σΩ(uΩ,ξ) = 0 in D,
σΩ(uΩ,ξ)n = Fξ on ΓF ,
σΩ(uΩ,ξ)n = 0 on Γ0,

uΩ,ξ = 0 on ΓD.

The objective functional to be minimized is again the volume J(Ω) = |Ω|. The constraint is an upper
bound Cmax on the compliance corresponding to each load. Therefore the function G is defined by

G(Ω) : I → R

ξ 7→ CΩ(ξ)− Cmax

with the compliance

CΩ(ξ) =

∫

ΓF

Fξ.uΩ,ξds.

We assume that the mapping
I → H−1/2(ΓF )
ξ 7→ Fξ

is continuous, which will hold true in the presented examples. It follows by elliptic regularity that
the composite mapping G(Ω) : I → R is also continuous. Therefore the relevant sets are Y = C(I)
and K = {y ∈ Y, y(ξ) ≥ 0 ∀ξ ∈ I}. Then we have Y ′ =M(I) and K+ =M+(I), the set of Radon
measures and positive Radon measures on I, respectively. As in the previous example, we have the
following topological sensitivity:

∀ξ ∈ I, CΩz,ρ
(ξ)− CΩ(ξ) =

N
∑

i=1

πρ2
iC

′
Ω(ξ)(zi) + o(ρ2), (8.1)
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with

C ′
Ω(ξ) =







1−εs

κεs+1
κ+1

2

[

2σ(uΩ,ξ) : e(uΩ,ξ) + (εs−1)(κ−2)
κ+2εs−1 trσ(uΩ,ξ)tre(uΩ,ξ)

]

in Ω,

− 1−εs

κ+εs

κ+1
2

[

2σ(uΩ,ξ) : e(uΩ,ξ) + (1−εs)(κ−2)
κεs+2−εs

trσ(uΩ,ξ)tre(uΩ,ξ)
]

in D \ Ω.

By arguing like in [11], we obtain that the remainder “o(ρ2)” is uniform with respect to ξ on I. We
deduce that (2.1) holds true with f(ρ) = πρ2 and G′(Ω) : ξ 7→ C ′(Ω)(ξ). Thus Assumption 2.1 is
fulfilled.

8.2. Discretization of the set of constraints. We select a finite number of points ξ1, ..., ξn ∈ I
for which the constraint will be observed. Hence the discretized constraint reads G(Ω)(ξ) ≤ 0 for all
ξ ∈ In := {ξ1, ..., ξn}. The general framework applies by substituting Yn = R

n for Y and Kn = R
n
+ for

K. In the subsequent examples, we choose a regular discretization of I, hence we use the canonical
scalar product on R

n. Identifying Y ′
n with Yn, we have K+

n = R
n
+.

P
Fξ

Figure 7. Boundary conditions for the beam problem.

8.3. Beam. We consider the problem depicted in Figure 7. The working domain is the square D =
[0, 1] × [0, 1]. The family of loads is indexed by the angle ξ ∈ I = [0, 2π]. For any ξ ∈ I, Fξ is a
pointwise force applied at the middle of the right edge, given by

Fξ =

[(

−1
0

)

+m

(

cos ξ
sin ξ

)]

δP .

In this expression, m is a nonnegative parameter. For the problem with discretized state equation,
δP is the discrete Dirac function at the point P . At the continuous level, the correspondence can be
obtained by taking δP as the characteristic function of a small neighborhood of P on ∂D.

We consider several cases, depending on the value of m. In every case, the compliance threshold is
Cmax = 10, the initial mesh is regular and consists of 2113 nodes. We use the augmented Lagrangian
with b = 10−4. The initial Lagrange multiplier is constant and equal to µ0 = 0.2.

(1) The case where m = 0 is special since there is only one constraint. The result of the compu-
tation entirely performed on the initial regular mesh is shown in Figures 8 (left) and 9. At
convergence, the compliance is equal to 10.06. Then the mesh is refined and the optimization
is continued. This procedure is repeated several times. The final mesh consists of 3145 nodes.
The compliance is equal to 9.84.

(2) For m > 0, the set of constraints is discretized with the help of n = 64 points. The results
obtained for m = 0.1, m = 0.2 and m = 0.3 are depicted on Figures 10,11,12,13 and 14. For
m = 0.1, the CPU time used is of 1097s. For m = 0.2, we present a first result obtained by a
computation of 1080s. As the constraint is slightly violated, the procedure is continued (2535s
for the whole computation). This shows that the computer time can be significantly reduced
by the use of a safety factor on the constraint. In the last case (m = 0.3), the parameter b
has been chosen equal to 10−2 in order to speed up the convergence (785s).
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Figure 8. Beam with m = 0: design obtained on the regular mesh (left) and on the
refined mesh (middle) with the corresponding mesh (right).
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Figure 9. Beam with m = 0. Convergence histories for the area (left), the compli-
ance (middle) and the Lagrange multiplier (right) before mesh refinement.

Figure 10. Beam with m = 0.1: design (left) and mesh (right, 3413 nodes).
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Figure 11. Beam with m = 0.1: compliance distribution (left) and Lagrange multi-
plier (right). The horizontal axis represents the angle ξ expressed in degrees.

Figure 12. Beam with m = 0.2. Intermediate result (left) and final result (right).
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Figure 13. Beam with m = 0.2: compliance distribution and Lagrange multiplier
for the intermediate result (left) and for the final result (right).
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Figure 14. Beam with m = 0.3: design (left), compliance distribution (middle) and
Lagrange multiplier (right).

Pξ

Fξ
ξ

Figure 15. Boundary conditions for the bridge problem.

8.4. Bridge. The computational domain is the rectangle D = [−1, 1] × [0, 1.2] (see Figure 15). The
loads consist of a family of pointwise forces (Fξ)ξ∈[−1,1] applied at the bottom edge. They are given
by

Fξ =

(

−1
0

)

δPξ
,

where Pξ is the point of coordinates (0, ξ). We apply the augmented Lagrangian algorithm with
b = 2.10−3 and the initial Lagrange multiplier µ0 = 0.1. The upper bound on the compliance is
Cmax = 25. The obtained result is shown on Figure 16 (1730s of CPU time).
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