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Abstrat. The topologial sensitivity analysis onsists in studying the behavior of a shape

funtional when modifying the topology of the domain. In general, the perturbation under

onsideration is the reation of a small hole. In this paper, the topologial asymptoti expansion

is obtained for the Laplae equation with respet to the insertion of a short rak inside a

plane domain. This result is illustrated by some numerial experiments in the ontext of rak

detetion.

1. Introdution

The detetion of geometrial faults is a problem of great interest for engineers, to hek the

integrity of strutures for example. The present work deals with the detetion and loalization

of raks for a simple model problem: the steady-state heat equation (Laplae equation) with

the heat ux imposed and the temperature measured on the boundary.

On the theoretial level, the �rst study on the identi�ability of raks was arried out by A.

Friedman and M.S. Vogelius [13℄. It was later ompleted by G. Alessandrini et al [2℄ and A.

Ben Abda et al [4, 7℄ who also proved stability results. In the same time, several reonstrution

algorithms were proposed [33, 6, 10, 8, 11℄.

Conurrently, shape optimization tehniques have progressed a lot. In partiular, some topo-

logial optimization methods have been developed for designing domains whose topology is a

priori unknown [3, 9, 35℄. Among them, the topologial gradient method was introdued by

A. Shumaher [35℄ in the ontext of ompliane minimization. Then J. Sokolowski and A.

Zohowski [36℄ generalized it to more general shape funtionals by involving an adjoint state.

To present the basi idea, let us onsider a variable domain 
 of R

2

and a ost funtional

j(
) = J(u




) to be minimized, where u




is solution to a given PDE de�ned over 
. For a

small parameter � � 0, let 
 n B(x

0

; �) be the perturbed domain obtained by the reation of a

irular hole of radius � around the point x

0

. The topologial sensitivity analysis provides an

asymptoti expansion of j(
 n B(x

0

; �)) when � tends to zero in the form:

j(
 n B(x

0

; �))� j(
) = f(�)g(x

0

) + o(f(�)):

In this expression, f(�) denotes an expliit positive funtion going to zero with �, g(x

0

) is alled

the topologial gradient or topologial derivative and it an be omputed easily. Consequently,

to minimize the riterion j, one has to reate holes at some points ~x where g(~x) is negative.

The topologial asymptoti expression has been obtained for various problems, arbitrary shaped

holes and a large lass of ost funtionals. Notably, one an ite the papers [15, 17, 18, 32℄

where suh formulas are proved by using a funtional framework based on a domain trunation

tehnique and a generalization of the adjoint method [25℄.

The theoretial part of this paper deals with the topologial sensitivity analysis for the Laplae

equation with respet to the insertion of an arbitrary shaped rak with a Neumann ondition

presribed on its boundary. In this situation, the ontributions fous on the behavior of the

solution or of speial riterions like the energy integral or the eigenvalues [26, 27, 20℄. To

alulate the topologial derivative, we onstrut an appropriate adjoint method that applies in

the funtional spae de�ned over the raked domain. This approah, ombined with a suitable
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approximation of the solution by a double layer potential, leads to a simpler mathematial

analysis than the trunation tehnique. The numerial part is devoted to the inverse geometrial

problem desribed above. The Kohn-Vogelius riterion [21℄ is used like a ost funtional. We

explain the proedure as well as presenting some numerial results.

2. Problem formulation

Let 
 be a bounded domain of R

2

with smooth boundary �. We onsider a regular division

� = �

0

[ �

1

, where �

0

and �

1

are open manifolds, �

0

is of nonzero measure and �

0

\ �

1

= ;.

The soure terms onsist in two funtions f 2 L

2

(
) and g 2 H

1=2

00

(�

1

)

0

. We reall that, for an

open manifold � suh that

�

� �

~

� where

~

� is a smooth, open and bounded manifold of the same

dimension as �, we have [24℄

H

1=2

00

(�) =

n

u

j�

; u 2 H

1=2

(

~

�); u

j

~

�n

�

�

= 0

o

: (1)

It is endowed with the norm de�ned for all u 2 H

1=2

(

~

�) by

ku

j�

k

H

1=2

00

(�)

= kuk

H

1=2

(

~

�)

:

The initial problem (for the safe domain) is the following: �nd u

0

2 H

1

(
) suh that

8

<

:

��u

0

= f in 
;

u

0

= 0 on �

0

;

�

n

u

0

= g on �

1

:

(2)

For a given x

0

2 
, let us now onsider the raked domain 


�

= 
 n �

�

, �

�

= x

0

+ ��,

where � > 0 and � is a �xed bounded manifold of dimension 1 and of lass C

1

(see Figure 1).

We assume that 


�

is onneted. Possibly hanging the oordinate system, we will suppose for

onveniene that x

0

= 0. The new solution u

�

2 H

1

(


�

) satis�es

+

−

n

Ω

ρ

ρ

σ

Γ

Figure 1. The raked domain.

8

>

>

<

>

>

:

��u

�

= f in 


�

;

u

�

= 0 on �

0

;

�

n

u

�

= g on �

1

;

�

n

u

�

= 0 on �

�

:

(3)

The variational formulation of this problem reads: �nd u

�

2 H

1

(


�

) suh that

a

�

(u

�

; v) = l

�

(v) 8v 2 V

�

; (4)

with

V

�

= fu 2 H

1

(


�

); u

j�

0

= 0g (5)
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and for all u; v 2 V

�

,

8

>

>

<

>

>

:

a

�

(u; v) =

Z




�

ru:rvdx;

l

�

(v) =

Z




�

fvdx+

Z

�

1

gvds:

(6)

As usual in analysis, the duality produt between H

1=2

00

(�

1

)

0

and H

1=2

00

(�

1

) is denoted by an

integral. When � = 0, that formulation is also valid for Problem (2) by setting 


0

= 
 in

Equations (5) and (6).

Let D be a �xed open set ontaining the origin and suh that D � 
. We de�ne the funtional

spae

W = fu 2 L

2

(
); u 2 H

1

(
 nD)g; (7)

whih is equipped with the norm

kuk

W

= (kuk

2

0;


+ kuk

2

1;
nD

)

1=2

:

In all the paper, for a given domain O, we denote by kuk

0;O

and kuk

1;O

the standard norms of

the funtion u in the spaes L

2

(O) and H

1

O), respetively. The semi-norm juj

1;O

= kruk

0;O

will also be used. Consider �nally a di�erentiable funtional J :W ! R. We wish to study the

asymptoti behavior when � tends to zero of the riterion

j(�) = J(u

�

):

3. An appropriate adjoint method

The following adjoint method is espeially onstruted to apply to the above problem. In

fat, the key point is that the funtional spaes �t together as follows: for all � > 0,

V

0

� V

�

� W: (8)

For all � � 0, we denote by v

�

the solution to the problem: �nd v

�

2 V

�

suh that

a

�

(u; v

�

) = �DJ(u

0

)u 8u 2 V

�

: (9)

The funtions u

0

and v

0

are respetively alled the diret and adjoint states. We assume that

the following hypothesis holds.

Hypothesis 1. There exist Æ 2 R and f : R

+

! R

+

tending to zero with � suh that

(1) ku

�

� u

0

k

W

= O(f(�)),

(2) a

�

(u

0

� u

�

; v

�

) = f(�)Æ + o(f(�)).

Then, the asymptoti expansion of j(�) is provided by the following Proposition.

Proposition 1. If Hypothesis 1 is satis�ed, then

j(�)� j(0) = f(�)Æ + o(f(�)):

Proof. Using the di�erentiability of J , Hypothesis 1 and Equation (9) , we obtain suessively

j(�) � j(0) = J(u

�

)� J(u

0

)

= DJ(u

0

)(u

�

� u

0

) + o(ku

�

� u

0

k

W

)

= �a

�

(u

�

� u

0

; v

�

) + o(f(�))

= f(�)Æ + o(f(�)):

�
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4. Asymptoti alulus

We have now to hek Hypothesis 1 in the ontext of Problem (3). To simplify the presenta-

tion, all tehnial estimates are reported in Setion 5. In this way, we assume for the moment

that ku

�

� u

0

k

W

= O(�

2

), whih insures that the �rst ondition of Hypothesis 1 is ful�lled if

�

2

= O(f(�)). We fous here on the determination of f(�) and Æ suh that the seond part of

Hypothesis 1 holds.

4.1. Preliminary alulus. We obtain by using the Green formula

a

�

(u

0

� u

�

; v

�

) =

Z




�

r(u

0

� u

�

):rv

�

dx

= �

Z

�

�

�

n

u

0

[v

�

℄ds

where [v

�

℄ = v

�

j�

+

�

� v

�

j�

�

�

2 H

1=2

00

(�

�

) (see Figure 1). We introdue the variation

w

�

= v

�

� v

0

:

From (9), we obtain that w

�

is solution to the problem : �nd w

�

2 H

1

(


�

) suh that

8

>

>

<

>

>

:

�w

�

= 0 in 


�

;

w

�

= 0 on �

0

;

�

n

w

�

= 0 on �

1

;

�

n

w

�

= ��

n

v

0

on �

�

:

(10)

We are going to searh for an appropriate approximation of w

�

.

4.2. De�nitions and standard results about exterior problems. Let � be a bounded

manifold of dimension 1, of lass C

1

and � = R

2

n �. We suppose that � is onneted. The

spae W

1

(�) is de�ned by (see e:g: [19, 23, 16℄):

W

1

(�) =

�

u 2 D

0

(�);

u

(1 + r) ln(1 + r)

2 L

2

(�) and ru 2 L

2

(�)

�

:

It is equipped with the norm

kuk

W

1

(�)

=

 









u

(1 + r) ln(1 + r)









2

L

2

(�)

+ kruk

2

L

2

(�)

!

1=2

:

In the above expressions, the letter r denotes the distane to the origin.

Given  2 H

1=2

00

(�)

0

, let us now onsider the problem

8

<

:

�u = 0 in �;

u = 0 at 1;

�

n

u =  on �:

(11)

To solve it with the help of a potential, we need to introdue the fundamental solution of the

Laplaian in 2D:

E(x) =

1

2�

ln jxj:

We have the following theorem (see [16, 30℄).

Theorem 2. (1) Problem (11) has a unique solution u 2 W

1

(�) and the map  7! u is

linear and ontinuous from H

1=2

00

(�)

0

into W

1

(�).

(2) The solution u is the double layer potential

u(x) =

Z

�

�(y)�

n

y

E(x� y)ds(y) 8x 2 �;

where � = T

�

 , T

�

being a known isomorphism from H

1=2

00

(�)

0

into H

1=2

00

(�).
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(3) We have the jump relation for the same orientation as in Figure 1:

[u℄ = u

j�

+ � u

j�

� = ��:

(4) If � is a line segment with urvilinear absissa s, we have for all � 2 (H

1=2

00

\C

1

)(�) and

' 2 D(�)

< T

�1

�

�; ' >= �

Z

�

Z

�

d�

ds

(x)

d'

ds

(y)E(x� y)ds(x)ds(y):

4.3. Estimate of w

�

. Let us now ome bak to the approximation of the solution to Problem

(10).

(1) First approximation : We approximate w

�

by h

�

the solution to the exterior problem:

�nd h

�

2W

1

(R

2

n �

�

) suh that

8

<

:

�h

�

= 0 in R

2

n �

�

;

�

n

h

�

= ��

n

v

0

on �

�

;

h

�

= 0 at 1:

(12)

Then, we use the hange of variable

h

�

(x) = �H

�

�

x

�

�

:

The funtion H

�

2W

1

(R

2

n �) veri�es

8

<

:

�H

�

= 0 in R

2

n �;

�

n

H

�

(x) = ��

n

v

0

(�x) on �;

H

�

= 0 at 1:

By Theorem 2, H

�

an be written in the form

H

�

(x) =

Z

�

q

�

(y)�

n

y

E(x� y)ds(y) 8x 2 R

2

n �; (13)

where q

�

2 H

1=2

00

(�) is de�ned by

q

�

= T

�

(��

n

v

0

(�x)): (14)

(2) Seond approximation : We approximate now q

�

by

q = T

�

(�rv

0

(0):n): (15)

4.4. Asymptoti expansion of the ost funtional. We set

E

1

(�) = �

Z

�

�

�

n

u

0

[w

�

� h

�

℄ds:

Then

a

�

(u

0

� u

�

; v

�

) = �

Z

�

�

�

n

u

0

[w

�

℄ds

= �

Z

�

�

�

n

u

0

[h

�

℄ds+E

1

(�)

= ��

2

Z

�

�

n

u

0

(�x)[H

�

℄ds+E

1

(�):

We denote also

E

2

(�) = ��

2

Z

�

�

n

u

0

(�x)(q

�

� q)ds:
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By the jump relation of Theorem 2, we have

a

�

(u

0

� u

�

; v

�

) = �

2

Z

�

�

n

u

0

(�x)q

�

ds+E

1

(�)

= �

2

Z

�

�

n

u

0

(�x)qds+E

1

(�) +E

2

(�):

Finally, we de�ne

E

3

(�) = �

2

Z

�

(�

n

u

0

(�x)�ru

0

(0):n)qds

and we obtain

a

�

(u

0

� u

�

; v

�

) = �

2

Z

�

ru

0

(0):nqds +E

1

(�) +E

2

(�) +E

3

(�):

We will prove in Setion 5 that E

i

(�) = o(�

2

) 8i = 1; 2; 3. Therefore, we are allowed to set

f(�) = �

2

;

Æ = ru

0

(0):

Z

�

qnds:

Let us introdue the so-alled polarization matrix A

�

, de�ned as the matrix of the linear map

V 2 R

2

7! A

�

V =

Z

�

T

�

(V:n)nds: (16)

In the ase of a hole instead of a rak, similar matries an be de�ned with the help of a single

layer potential [34, 31, 14, 5, 29℄. They are proved to be symmetri positive de�nite, and this is

still true for a rak. Then, we an write

Æ = �ru

0

(0):A

�

rv

0

(0):

From Proposition 1, we derive the following theorem.

Theorem 3. If

� the ost funtional J is di�erentiable on the spae W de�ned by (7),

� the soure terms f and DJ(u

0

) are of regularity H

2

in a neighborhood of the origin,

� the diret and adjoint states are solutions to (4) and (9) with a

�

and l

�

de�ned by (6),

� the polarization matrix A

�

is de�ned by (16),

then the riterion admits the following asymptoti expansion when � tends to zero:

j(�) � j(0) = ��

2

ru

0

(0):A

�

rv

0

(0) + o(�

2

): (17)

4.5. Straight rak. Let � be a line segment of length 2 entered at the origin, with unit normal

n. Using Theorem 2, one an hek that the appropriate density evaluated at the urvilinear

absissa s is

T

�

(V:n)(s) = 2(V:n)

p

1� s

2

:

We have then

A

�

V = �(V:n)n:

Corollary 4. For a straight rak of normal n, the topologial asymptoti expansion reads

j(�)� j(0) = ���

2

(ru

0

(0):n)(rv

0

(0):n) + o(�

2

): (18)

This formula extends to the ase of a vetor �eld. Denoting by u

i

0

and v

i

0

, i = 1::P the omponents

of u

0

and v

0

, one gets the expansion:

j(�) � j(0) = ���

2

P

X

i=1

(ru

i

0

(0):n)(rv

i

0

(0):n) + o(�

2

): (19)
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5. Proofs

5.1. Preliminary lemmas.

Lemma 1. Consider  2 H

1=2

00

(�)

0

and let z 2W

1

(R

2

n �) be the solution to the problem

8

<

:

�z = 0 in R

2

n �;

z = 0 at 1;

�

n

z =  on �:

there exists  > 0, independent of � and  , suh that

jzj

1;

1

�

(
nD)

� �k k

H

1=2

00

(�)

0

:

Proof. Aording to Theorem 2, there exists � 2 H

1=2

00

(�) suh that

z(x) =

Z

�

�(y)�

n

y

E(x� y)ds(y); 8x 2 R

2

n �;

where � = T

�

 . Using a Taylor expansion of E omputed at the point x and the ontinuity of

T

�

, we have that

jrz(x)j �



jxj

2

k k

H

1=2

00

(�)

0

;

from whih we dedue the result. �

Lemma 2. Consider g 2 H

1=2

00

(�

1

)

0

, � � 0, h 2 H

1=2

00

(�

�

)

0

and let z 2 H

1

(


�

) be the solution

to the problem

8

>

>

<

>

>

:

�z = 0 in 


�

;

z = 0 on �

0

;

�

n

z = g on �

1

;

�

n

z = h on �

�

:

(20)

There exist some positive onstants denoted by  independent of �, g and h suh that for all �

small enough

kzk

0;


�

� �

2

kh(�x)k

H

1=2

00

(�)

0

+ kgk

H

1=2

00

(�

1

)

0

;

jzj

1;


�

� �kh(�x)k

H

1=2

00

(�)

0

+ kgk

H

1=2

00

(�

1

)

0

;

kzk

1;
nD

� �

2

kh(�x)k

H

1=2

00

(�)

0

+ kgk

H

1=2

00

(�

1

)

0

:

Proof. The funtion z is split into z

1

+ z

2

respetively solutions to

8

<

:

�z

1

= 0 in R

2

n �

�

;

z

1

= 0 at 1;

�

n

z

1

= h on �

�

;

8

>

>

<

>

>

:

�z

2

= 0 in 


�

;

z

2

= �z

1

on �

0

;

�

n

z

2

= g � �

n

z

1

on �

1

;

�

n

z

2

= 0 on �

�

:

The funtion ~z

1

(x) = z

1

(�x)=� is solution to

8

<

:

�~z

1

= 0 in R

2

n �;

~z

1

= 0 at 1;

�

n

~z

1

= h(�x) on �:

By ellipti regularity, we have

k~z

1

k

W

1

(R

2

n�)

� kh(�x)k

H

1=2

00

(�)

0

:

Lemma 1 yields

j~z

1

j

1;

1

�

(
nD)

� �kh(�x)k

H

1=2

00

(�)

0

:

Then, a hange of variable brings

kz

1

k

0;


�

� �

2

kh(�x)k

H

1=2

00

(�)

0

;
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jz

1

j

1;


�

� �kh(�x)k

H

1=2

00

(�)

0

;

kz

1

k

1;
nD

� �

2

kh(�x)k

H

1=2

00

(�)

0

:

Moreover, we have by ellipti regularity

kz

2

k

1;


�

� kz

1

k

1;
nD

+ kgk

H

1=2

00

(�

1

)

0

;

whih ompletes the proof. �

5.2. Proof of Theorem 3. The result is a onsequene of Proposition 1 if we prove that

ku

�

� u

0

k

W

= O(�

2

) and that E

i

(�) = o(�

2

) for i = 1; 2; 3.

5.2.1. Estimate of the variation of the solution. It is an immediate appliation of Lemma 2 that

ku

�

� u

0

k

W

= O(�

2

):

5.2.2. Estimate of the remainders. We will denote by  any positive onstant independent of �.

(1) We have

jE

1

(�)j = �

�

�

�

�

Z

�

�

n

u

0

(�x)[(w

�

� h

�

)(�x)℄ds

�

�

�

�

� �k�

n

u

0

(�x)k

H

1=2

00

(�)

0

k[(w

�

� h

�

)(�x)℄k

H

1=2

00

(�)

� �k[e

�

(�x)℄k

H

1=2

00

(�)

;

where e

�

= w

�

� h

�

is solution to

8

>

>

<

>

>

:

�e

�

= 0 in 


�

;

e

�

= �h

�

on �

0

;

�

n

e

�

= ��

n

h

�

on �

1

;

�

n

e

�

= 0 on �

�

:

Denoting by B some ball ontaining �, we obtain by using the trae theorem

k[e

�

(�x)℄k

H

1=2

00

(�)

= inf

2R

k[e

�

(�x) + ℄k

H

1=2

00

(�)

�  inf

2R

ke

�

(�x) + k

1;Bn�

� je

�

(�x)j

1;Bn�

:

A hange of variable and the ellipti regularity yield

k[e

�

(�x)℄k

H

1=2

00

(�)

� je

�

j

1;


�

�  inf

2R

ke

�

+ k

1;


�

�  inf

2R

kh

�

+ k

1;
nD

� jh

�

j

1;
nD

:

Next, a hange of variable and Lemma 1 yield

k[e

�

(�x)℄k

H

1=2

00

(�)

� �jH

�

j

1;

1

�

(
nD)

� �

2

k�

n

v

0

(�x)k

H

1=2

00

(�)

0

:

Finally,

jE

1

(�)j � �

3

:

(2) We have

jE

2

(�)j � �

2

k�

n

u

0

(�x)k

H

1=2

00

(�)

0

kq

�

� qk

H

1=2

00

(�)

� �

2

kq

�

� qk

H

1=2

00

(�)

:

By ontinuity of the operator T

�

, we have

kq

�

� qk

H

1=2

00

(�)

� k�

n

v

0

(�x)�rv

0

(0):nk

H

1=2

00

(�)

0

� k�

n

v

0

(�x)�rv

0

(0):nk

C

0

(�)

:

Yet, v

0

is of lass C

2

in a neighborhood of the origin. Thus,

kq

�

� qk

H

1=2

00

(�)

� � (21)
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and

jE

2

(�)j � �

3

:

(3) We have

jE

3

(�)j � �

2

k�

n

u

0

(�x)�ru

0

(0):nk

H

1=2

00

(�)

0

kqk

H

1=2

00

(�)

:

As u

0

is of lass C

2

in a neighborhood of the origin,

k�

n

u

0

(�x)�ru

0

(0):nk

H

1=2

00

(�)

0

� k�

n

u

0

(�x)�ru

0

(0):nk

C

0

(�)

� �:

Hene,

jE

3

(�)j � �

3

:

�

6. Numerial appliations

In this numerial study, we use Formula (19) to detet and loate raks with the help of

boundary measurements. The ontext is the one of the steady-state heat equation.

6.1. The inverse problem. Let 
 be a domain ontaining a perfetly insulating rak �

�

whose

loation, orientation, shape and length are to be retrieved. We dispose of the temperature �

measured on the boundary � for a heat ux ' presribed: � = u(�

�

)

j�

, where u(�

�

) is the

solution to the PDE

8

<

:

�u(�

�

) = 0 in 
 n �;

�

n

u(�

�

) = ' on �;

�

n

u(�

�

) = 0 on �:

(22)

To ensure well-posedness of the above system, we assume the normalization ondition

Z

�

'ds = 0

and we impose that the mean value of the solution is equal to zero:

Z


n�

�

u(�

�

)dx = 0:

In pratie, several measurements, orresponding to di�erent uxes, may be needed. But for

the larity of the presentation, let us onsider the simplest ase of one measurement.

6.2. The ost funtional and the topologial gradient. Sine the boundary onditions

(�; ') are overspei�ed, one an de�ne for any rak � � 
 two forward problems:

� the \Dirihlet" problem:

8

<

:

�u

D

(�) = 0 in 
 n �;

u

D

(�) = � on �;

�

n

u

D

(�) = 0 on �;

(23)

� the \Neumann" problem:

8

<

:

�u

N

(�) = 0 in 
 n �;

�

n

u

N

(�) = ' on �;

�

n

u

N

(�) = 0 on �:

(24)

The solution to this latter system is de�ned up to an additive onstant, whih is determined by

the equation

Z


n�

u

N

(�)dx = 0: (25)

This ondition plays the same role as the fat of presribing a Dirihlet ondition on a part

of the boundary, whih was hosen for simpliity in the theoretial study. The atual rak
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�

�

is reahed (� = �

�

) when there is no mis�t between both solutions, that is, when the ost

funtional

J (�) = J(u

D

(�); u

N

(�)) =

1

2

ku

D

(�)� u

N

(�)k

2

L

2

(
)

(26)

vanishes. This is the so-alled Kohn-Vogelius riterion [21℄. To ompute the orresponding

topologial gradient, we need to solve numerially:

� the two diret problems on the safe domain

�

�u

D

= 0 in 
;

u

D

= � on �;

(27)

8

>

<

>

:

�u

N

= 0 in 
;

�

n

u

N

= ' on �;

Z




u

N

dx = 0;

(28)

whose solutions are denoted by u

D

and u

N

instead of u

D

(;) and u

N

(;) to simplify the

writing,

� two adjoint problems (de�ned on the safe domain too)

�

��v

D

= �(u

D

� u

N

) in 
;

v

D

= 0 on �;

(29)

8

>

<

>

:

��v

N

= +(u

D

� u

N

)� u

D

in 
;

�

n

v

N

= 0 on �;

Z




v

N

dx = 0;

(30)

with

u

D

=

1

meas (
)

Z




u

D

dx:

The above adjoint problems are derived diretly from their variational formulations (a quotient

funtional spae is needed to de�ne the Neumann problem). The existene of the solution to

Problem (30) omes from Equation (25). Using a vetor �eld U = (u

D

; u

N

), Corollary 4 provides

the following expression of the topologial asymptoti for that ost funtional and the insertion

of a small straight rak:

J (�

x;�;n

)� J (;) = ���

2

[(ru

D

(x):n)(rv

D

(x):n) + (ru

N

(x):n)(rv

N

(x):n)℄ + o(�

2

);

where �

x;�;n

is the line rak of length 2�, entered at the point x and of unit normal n. One

an also write the orresponding topologial gradient

g(x;n) = ��[(ru

D

(x):n)(rv

D

(x):n) + (ru

N

(x):n)(rv

N

(x):n)℄

as follows:

g(x;n) = n

T

M(x)n;

where M(x) is the symmetri matrix de�ned by

M(x) = ��sym (ru

D

(x)
rv

D

(x) +ru

N

(x)
rv

N

(x)):

The notation sym (X) stands for the symmetri part of the square matrix X: sym (X) =

(X + X

T

)=2 and the tensor produt of two vetors means U 
 V = UV

T

. Aording to that

expression, g(x;n) is minimal at the point x when the normal n = n

1

is an eigenvetor assoiated

to the smallest eigenvalue �

1

(x) of the matrix M(x). Then, g(x;n

1

) = �

1

(x). Heneforth, we

will all topologial gradient this value.
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6.3. Numerial result in one iteration without noise. Let us now desribe a simple and

very fast numerial proedure. First, we solve the two diret problems and the two adjoint

problems (Dirihlet and Neumann). Then, in eah ell of the mesh, we ompute the matrix

M(x) and its eigenvalues. By regarding the unknown rak as the addition of small straight

raks whose interations are negleted and by using the previous asymptoti analysis, one

expets that rak to lie in the regions where the topologial gradient is the most negative.

Let 
 be the unit dis and �

�

be a line segment rak. The heat ux ' is imposed on � by

'(x) = x

2

, the seond oordinate of the point x. In this experiment, the ux inside the safe

domain is not parallel to the rak, so that only one measurement is needed for the reonstrution

(see [4℄). We apply the proedure desribed above. The loation of the unknown rak as well

as the topologial gradient are indiated in Figures 2 and 3. We observe that the most negative

values of the topologial gradient are loated near the atual rak.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2. The unknown rak.

−1
0

1

−1

0

1
−3

−2

−1

0

x 10
7

−1 −0.5 0 0.5 1

−0.5

0

0.5

Figure 3. On the left: the topologial gradient ; on the right: superposition of

the atual rak and a negative isovalue of the topologial gradient.

6.4. Numerial results in one iteration with noise.

6.4.1. Case of a single rak. We fous here on simulated noisy measurements. A white noise

is added to the exat data. Figure 4 shows the results obtained for 5%, 10% and 20% of noise.

We observe that the inversion proedure is quite robust with respet to the presene of noise in

the measurements.
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−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4. Representation of a negative isovalue of the topologial gradient for

5%, 10% and 20% of noise, respetively.

6.4.2. Case of multi-raks. The omputation of the topologial gradient does not depend on

the number of raks inside the domain. This remark is illustrated by the following experiment.

The atual raks and the topologial gradient are represented in Figure 5. We use now two

uxes '

1

(x) = x

1

and '

2

(x) = x

2

. We take as a ost funtional the sum of the two quadrati

mis�ts. Hene, the matrix M(x) is assembled by adding the two orresponding ontributions.

We emphasize that these results are again obtained in only one iteration.

6.5. Identi�ation of raks with inomplete data. It is a more realisti situation where

a part only of the border is aessible to measurements. Let 
 be the unit dis with boundary

� = �

0

[�

1

. The heat ux ' is presribed on � and the temperature � is measured on �

1

, here

a quarter of the whole boundary. For any rak � � 
, we onsider the two following problems:

� the \Neumann-Dirihlet" problem:

8

>

>

<

>

>

:

�u

D

(�) = 0 in 
 n �;

u

D

(�) = � on �

1

;

�

n

u

D

(�) = ' on �

0

;

�

n

u

D

(�) = 0 on �;

(31)

� the \Neumann" problem:

8

<

:

�u

N

(�) = 0 in 
 n �;

�

n

u

N

(�) = ' on �;

�

n

u

N

(�) = 0 on �;

(32)
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−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 5. Respetively 5%, 10% and 20% of noise.

with the normalization ondition

Z


n�

u

N

(�)dx =

Z


n�

u

D

(�)dx:

We use the same ost funtional as before (see Equation (26)), but for the above �elds. Hene we

have the same topologial gradient expression and the numerial proedure remains unhanged.

The results are represented in Figure 6. The raks are loated in a satisfatory manner.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6. Topologial gradient with inomplete data (no noise).
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6.6. An iterative method. The algorithm onsists in inserting at eah iteration an insulating

element (that is, numerially, an element whose thermal ondutivity is very small) where the

topologial gradient is the most negative. The proess is stopped when the ost funtional does

not derease any more.

Algorithm

Initialization: Choose the initial domain 


0

and reate a mesh whih will remain �xed during

the proess. That domain is identi�ed with the set of its �nite elements: 


0

= fx

n

; n = 1; :::; Ng.

Set k = 0.

Repeat:

(1) Solve the diret and adjoint problems in 


k

,

(2) Compute the topologial gradient g

k

,

(3) Searh for the minimum of the topologial gradient: y

k

= argmin(g

k

(x); x 2 


k

),

(4) Set 


k+1

= 


k

n fy

k

g,

(5) k  k + 1.

We wish here to reover two raks with the help of one ux '(x) = x

2

(omplete data,

no additive noise). The �nal image and the onvergene history of the ost funtional are

represented in Figure 7.

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
x 10

−3

Figure 7. On the left: the atual raks and the reonstruted raks after a

few iterations ; on the right: the onvergene history of the riterion.

7. Conlusion

The mathematial framework presented in this paper an be adapted to determine the sen-

sitivity with respet to the insertion of a small rak for a large lass of linear and ellipti

problems.

The topologial gradient leads to fast methods for deteting and loating raks in that it only

requires to solve the diret and adjoint problems and satisfatory results are obtained after a

small number of iterations performed on a �xed grid. These methods an provide a good initial

guess for more aurate lassial shape optimization algorithms [22, 33℄.
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