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Abstra
t. The topologi
al sensitivity analysis 
onsists in studying the behavior of a shape

fun
tional when modifying the topology of the domain. In general, the perturbation under


onsideration is the 
reation of a small hole. In this paper, the topologi
al asymptoti
 expansion

is obtained for the Lapla
e equation with respe
t to the insertion of a short 
ra
k inside a

plane domain. This result is illustrated by some numeri
al experiments in the 
ontext of 
ra
k

dete
tion.

1. Introdu
tion

The dete
tion of geometri
al faults is a problem of great interest for engineers, to 
he
k the

integrity of stru
tures for example. The present work deals with the dete
tion and lo
alization

of 
ra
ks for a simple model problem: the steady-state heat equation (Lapla
e equation) with

the heat 
ux imposed and the temperature measured on the boundary.

On the theoreti
al level, the �rst study on the identi�ability of 
ra
ks was 
arried out by A.

Friedman and M.S. Vogelius [13℄. It was later 
ompleted by G. Alessandrini et al [2℄ and A.

Ben Abda et al [4, 7℄ who also proved stability results. In the same time, several re
onstru
tion

algorithms were proposed [33, 6, 10, 8, 11℄.

Con
urrently, shape optimization te
hniques have progressed a lot. In parti
ular, some topo-

logi
al optimization methods have been developed for designing domains whose topology is a

priori unknown [3, 9, 35℄. Among them, the topologi
al gradient method was introdu
ed by

A. S
huma
her [35℄ in the 
ontext of 
omplian
e minimization. Then J. Sokolowski and A.

Zo
howski [36℄ generalized it to more general shape fun
tionals by involving an adjoint state.

To present the basi
 idea, let us 
onsider a variable domain 
 of R

2

and a 
ost fun
tional

j(
) = J(u




) to be minimized, where u




is solution to a given PDE de�ned over 
. For a

small parameter � � 0, let 
 n B(x

0

; �) be the perturbed domain obtained by the 
reation of a


ir
ular hole of radius � around the point x

0

. The topologi
al sensitivity analysis provides an

asymptoti
 expansion of j(
 n B(x

0

; �)) when � tends to zero in the form:

j(
 n B(x

0

; �))� j(
) = f(�)g(x

0

) + o(f(�)):

In this expression, f(�) denotes an expli
it positive fun
tion going to zero with �, g(x

0

) is 
alled

the topologi
al gradient or topologi
al derivative and it 
an be 
omputed easily. Consequently,

to minimize the 
riterion j, one has to 
reate holes at some points ~x where g(~x) is negative.

The topologi
al asymptoti
 expression has been obtained for various problems, arbitrary shaped

holes and a large 
lass of 
ost fun
tionals. Notably, one 
an 
ite the papers [15, 17, 18, 32℄

where su
h formulas are proved by using a fun
tional framework based on a domain trun
ation

te
hnique and a generalization of the adjoint method [25℄.

The theoreti
al part of this paper deals with the topologi
al sensitivity analysis for the Lapla
e

equation with respe
t to the insertion of an arbitrary shaped 
ra
k with a Neumann 
ondition

pres
ribed on its boundary. In this situation, the 
ontributions fo
us on the behavior of the

solution or of spe
ial 
riterions like the energy integral or the eigenvalues [26, 27, 20℄. To


al
ulate the topologi
al derivative, we 
onstru
t an appropriate adjoint method that applies in

the fun
tional spa
e de�ned over the 
ra
ked domain. This approa
h, 
ombined with a suitable

1991 Mathemati
s Subje
t Classi�
ation. 35J05, 35J25, 49N45, 49Q10, 49Q12.

Key words and phrases. 
ra
k dete
tion, topologi
al sensitivity, Poisson equation.

1

samst
Texte tapé à la machine
Published in Control Cybernet. 34 (2005), no. 1, 81–101



2 S. Amstutz, I. Hor
hani, and M. Masmoudi

approximation of the solution by a double layer potential, leads to a simpler mathemati
al

analysis than the trun
ation te
hnique. The numeri
al part is devoted to the inverse geometri
al

problem des
ribed above. The Kohn-Vogelius 
riterion [21℄ is used like a 
ost fun
tional. We

explain the pro
edure as well as presenting some numeri
al results.

2. Problem formulation

Let 
 be a bounded domain of R

2

with smooth boundary �. We 
onsider a regular division

� = �

0

[ �

1

, where �

0

and �

1

are open manifolds, �

0

is of nonzero measure and �

0

\ �

1

= ;.

The sour
e terms 
onsist in two fun
tions f 2 L

2

(
) and g 2 H

1=2

00

(�

1

)

0

. We re
all that, for an

open manifold � su
h that

�

� �

~

� where

~

� is a smooth, open and bounded manifold of the same

dimension as �, we have [24℄

H

1=2

00

(�) =

n

u

j�

; u 2 H

1=2

(

~

�); u

j

~

�n

�

�

= 0

o

: (1)

It is endowed with the norm de�ned for all u 2 H

1=2

(

~

�) by

ku

j�

k

H

1=2

00

(�)

= kuk

H

1=2

(

~

�)

:

The initial problem (for the safe domain) is the following: �nd u

0

2 H

1

(
) su
h that

8

<

:

��u

0

= f in 
;

u

0

= 0 on �

0

;

�

n

u

0

= g on �

1

:

(2)

For a given x

0

2 
, let us now 
onsider the 
ra
ked domain 


�

= 
 n �

�

, �

�

= x

0

+ ��,

where � > 0 and � is a �xed bounded manifold of dimension 1 and of 
lass C

1

(see Figure 1).

We assume that 


�

is 
onne
ted. Possibly 
hanging the 
oordinate system, we will suppose for


onvenien
e that x

0

= 0. The new solution u

�

2 H

1

(


�

) satis�es

+

−

n

Ω

ρ

ρ

σ

Γ

Figure 1. The 
ra
ked domain.

8

>

>

<

>

>

:

��u

�

= f in 


�

;

u

�

= 0 on �

0

;

�

n

u

�

= g on �

1

;

�

n

u

�

= 0 on �

�

:

(3)

The variational formulation of this problem reads: �nd u

�

2 H

1

(


�

) su
h that

a

�

(u

�

; v) = l

�

(v) 8v 2 V

�

; (4)

with

V

�

= fu 2 H

1

(


�

); u

j�

0

= 0g (5)
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and for all u; v 2 V

�

,

8

>

>

<

>

>

:

a

�

(u; v) =

Z




�

ru:rvdx;

l

�

(v) =

Z




�

fvdx+

Z

�

1

gvds:

(6)

As usual in analysis, the duality produ
t between H

1=2

00

(�

1

)

0

and H

1=2

00

(�

1

) is denoted by an

integral. When � = 0, that formulation is also valid for Problem (2) by setting 


0

= 
 in

Equations (5) and (6).

Let D be a �xed open set 
ontaining the origin and su
h that D � 
. We de�ne the fun
tional

spa
e

W = fu 2 L

2

(
); u 2 H

1

(
 nD)g; (7)

whi
h is equipped with the norm

kuk

W

= (kuk

2

0;


+ kuk

2

1;
nD

)

1=2

:

In all the paper, for a given domain O, we denote by kuk

0;O

and kuk

1;O

the standard norms of

the fun
tion u in the spa
es L

2

(O) and H

1

O), respe
tively. The semi-norm juj

1;O

= kruk

0;O

will also be used. Consider �nally a di�erentiable fun
tional J :W ! R. We wish to study the

asymptoti
 behavior when � tends to zero of the 
riterion

j(�) = J(u

�

):

3. An appropriate adjoint method

The following adjoint method is espe
ially 
onstru
ted to apply to the above problem. In

fa
t, the key point is that the fun
tional spa
es �t together as follows: for all � > 0,

V

0

� V

�

� W: (8)

For all � � 0, we denote by v

�

the solution to the problem: �nd v

�

2 V

�

su
h that

a

�

(u; v

�

) = �DJ(u

0

)u 8u 2 V

�

: (9)

The fun
tions u

0

and v

0

are respe
tively 
alled the dire
t and adjoint states. We assume that

the following hypothesis holds.

Hypothesis 1. There exist Æ 2 R and f : R

+

! R

+

tending to zero with � su
h that

(1) ku

�

� u

0

k

W

= O(f(�)),

(2) a

�

(u

0

� u

�

; v

�

) = f(�)Æ + o(f(�)).

Then, the asymptoti
 expansion of j(�) is provided by the following Proposition.

Proposition 1. If Hypothesis 1 is satis�ed, then

j(�)� j(0) = f(�)Æ + o(f(�)):

Proof. Using the di�erentiability of J , Hypothesis 1 and Equation (9) , we obtain su

essively

j(�) � j(0) = J(u

�

)� J(u

0

)

= DJ(u

0

)(u

�

� u

0

) + o(ku

�

� u

0

k

W

)

= �a

�

(u

�

� u

0

; v

�

) + o(f(�))

= f(�)Æ + o(f(�)):

�
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4. Asymptoti
 
al
ulus

We have now to 
he
k Hypothesis 1 in the 
ontext of Problem (3). To simplify the presenta-

tion, all te
hni
al estimates are reported in Se
tion 5. In this way, we assume for the moment

that ku

�

� u

0

k

W

= O(�

2

), whi
h insures that the �rst 
ondition of Hypothesis 1 is ful�lled if

�

2

= O(f(�)). We fo
us here on the determination of f(�) and Æ su
h that the se
ond part of

Hypothesis 1 holds.

4.1. Preliminary 
al
ulus. We obtain by using the Green formula

a

�

(u

0

� u

�

; v

�

) =

Z




�

r(u

0

� u

�

):rv

�

dx

= �

Z

�

�

�

n

u

0

[v

�

℄ds

where [v

�

℄ = v

�

j�

+

�

� v

�

j�

�

�

2 H

1=2

00

(�

�

) (see Figure 1). We introdu
e the variation

w

�

= v

�

� v

0

:

From (9), we obtain that w

�

is solution to the problem : �nd w

�

2 H

1

(


�

) su
h that

8

>

>

<

>

>

:

�w

�

= 0 in 


�

;

w

�

= 0 on �

0

;

�

n

w

�

= 0 on �

1

;

�

n

w

�

= ��

n

v

0

on �

�

:

(10)

We are going to sear
h for an appropriate approximation of w

�

.

4.2. De�nitions and standard results about exterior problems. Let � be a bounded

manifold of dimension 1, of 
lass C

1

and � = R

2

n �. We suppose that � is 
onne
ted. The

spa
e W

1

(�) is de�ned by (see e:g: [19, 23, 16℄):

W

1

(�) =

�

u 2 D

0

(�);

u

(1 + r) ln(1 + r)

2 L

2

(�) and ru 2 L

2

(�)

�

:

It is equipped with the norm

kuk

W

1

(�)

=

 













u

(1 + r) ln(1 + r)













2

L

2

(�)

+ kruk

2

L

2

(�)

!

1=2

:

In the above expressions, the letter r denotes the distan
e to the origin.

Given  2 H

1=2

00

(�)

0

, let us now 
onsider the problem

8

<

:

�u = 0 in �;

u = 0 at 1;

�

n

u =  on �:

(11)

To solve it with the help of a potential, we need to introdu
e the fundamental solution of the

Lapla
ian in 2D:

E(x) =

1

2�

ln jxj:

We have the following theorem (see [16, 30℄).

Theorem 2. (1) Problem (11) has a unique solution u 2 W

1

(�) and the map  7! u is

linear and 
ontinuous from H

1=2

00

(�)

0

into W

1

(�).

(2) The solution u is the double layer potential

u(x) =

Z

�

�(y)�

n

y

E(x� y)ds(y) 8x 2 �;

where � = T

�

 , T

�

being a known isomorphism from H

1=2

00

(�)

0

into H

1=2

00

(�).
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(3) We have the jump relation for the same orientation as in Figure 1:

[u℄ = u

j�

+ � u

j�

� = ��:

(4) If � is a line segment with 
urvilinear abs
issa s, we have for all � 2 (H

1=2

00

\C

1

)(�) and

' 2 D(�)

< T

�1

�

�; ' >= �

Z

�

Z

�

d�

ds

(x)

d'

ds

(y)E(x� y)ds(x)ds(y):

4.3. Estimate of w

�

. Let us now 
ome ba
k to the approximation of the solution to Problem

(10).

(1) First approximation : We approximate w

�

by h

�

the solution to the exterior problem:

�nd h

�

2W

1

(R

2

n �

�

) su
h that

8

<

:

�h

�

= 0 in R

2

n �

�

;

�

n

h

�

= ��

n

v

0

on �

�

;

h

�

= 0 at 1:

(12)

Then, we use the 
hange of variable

h

�

(x) = �H

�

�

x

�

�

:

The fun
tion H

�

2W

1

(R

2

n �) veri�es

8

<

:

�H

�

= 0 in R

2

n �;

�

n

H

�

(x) = ��

n

v

0

(�x) on �;

H

�

= 0 at 1:

By Theorem 2, H

�


an be written in the form

H

�

(x) =

Z

�

q

�

(y)�

n

y

E(x� y)ds(y) 8x 2 R

2

n �; (13)

where q

�

2 H

1=2

00

(�) is de�ned by

q

�

= T

�

(��

n

v

0

(�x)): (14)

(2) Se
ond approximation : We approximate now q

�

by

q = T

�

(�rv

0

(0):n): (15)

4.4. Asymptoti
 expansion of the 
ost fun
tional. We set

E

1

(�) = �

Z

�

�

�

n

u

0

[w

�

� h

�

℄ds:

Then

a

�

(u

0

� u

�

; v

�

) = �

Z

�

�

�

n

u

0

[w

�

℄ds

= �

Z

�

�

�

n

u

0

[h

�

℄ds+E

1

(�)

= ��

2

Z

�

�

n

u

0

(�x)[H

�

℄ds+E

1

(�):

We denote also

E

2

(�) = ��

2

Z

�

�

n

u

0

(�x)(q

�

� q)ds:
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By the jump relation of Theorem 2, we have

a

�

(u

0

� u

�

; v

�

) = �

2

Z

�

�

n

u

0

(�x)q

�

ds+E

1

(�)

= �

2

Z

�

�

n

u

0

(�x)qds+E

1

(�) +E

2

(�):

Finally, we de�ne

E

3

(�) = �

2

Z

�

(�

n

u

0

(�x)�ru

0

(0):n)qds

and we obtain

a

�

(u

0

� u

�

; v

�

) = �

2

Z

�

ru

0

(0):nqds +E

1

(�) +E

2

(�) +E

3

(�):

We will prove in Se
tion 5 that E

i

(�) = o(�

2

) 8i = 1; 2; 3. Therefore, we are allowed to set

f(�) = �

2

;

Æ = ru

0

(0):

Z

�

qnds:

Let us introdu
e the so-
alled polarization matrix A

�

, de�ned as the matrix of the linear map

V 2 R

2

7! A

�

V =

Z

�

T

�

(V:n)nds: (16)

In the 
ase of a hole instead of a 
ra
k, similar matri
es 
an be de�ned with the help of a single

layer potential [34, 31, 14, 5, 29℄. They are proved to be symmetri
 positive de�nite, and this is

still true for a 
ra
k. Then, we 
an write

Æ = �ru

0

(0):A

�

rv

0

(0):

From Proposition 1, we derive the following theorem.

Theorem 3. If

� the 
ost fun
tional J is di�erentiable on the spa
e W de�ned by (7),

� the sour
e terms f and DJ(u

0

) are of regularity H

2

in a neighborhood of the origin,

� the dire
t and adjoint states are solutions to (4) and (9) with a

�

and l

�

de�ned by (6),

� the polarization matrix A

�

is de�ned by (16),

then the 
riterion admits the following asymptoti
 expansion when � tends to zero:

j(�) � j(0) = ��

2

ru

0

(0):A

�

rv

0

(0) + o(�

2

): (17)

4.5. Straight 
ra
k. Let � be a line segment of length 2 
entered at the origin, with unit normal

n. Using Theorem 2, one 
an 
he
k that the appropriate density evaluated at the 
urvilinear

abs
issa s is

T

�

(V:n)(s) = 2(V:n)

p

1� s

2

:

We have then

A

�

V = �(V:n)n:

Corollary 4. For a straight 
ra
k of normal n, the topologi
al asymptoti
 expansion reads

j(�)� j(0) = ���

2

(ru

0

(0):n)(rv

0

(0):n) + o(�

2

): (18)

This formula extends to the 
ase of a ve
tor �eld. Denoting by u

i

0

and v

i

0

, i = 1::P the 
omponents

of u

0

and v

0

, one gets the expansion:

j(�) � j(0) = ���

2

P

X

i=1

(ru

i

0

(0):n)(rv

i

0

(0):n) + o(�

2

): (19)
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5. Proofs

5.1. Preliminary lemmas.

Lemma 1. Consider  2 H

1=2

00

(�)

0

and let z 2W

1

(R

2

n �) be the solution to the problem

8

<

:

�z = 0 in R

2

n �;

z = 0 at 1;

�

n

z =  on �:

there exists 
 > 0, independent of � and  , su
h that

jzj

1;

1

�

(
nD)

� 
�k k

H

1=2

00

(�)

0

:

Proof. A

ording to Theorem 2, there exists � 2 H

1=2

00

(�) su
h that

z(x) =

Z

�

�(y)�

n

y

E(x� y)ds(y); 8x 2 R

2

n �;

where � = T

�

 . Using a Taylor expansion of E 
omputed at the point x and the 
ontinuity of

T

�

, we have that

jrz(x)j �




jxj

2

k k

H

1=2

00

(�)

0

;

from whi
h we dedu
e the result. �

Lemma 2. Consider g 2 H

1=2

00

(�

1

)

0

, � � 0, h 2 H

1=2

00

(�

�

)

0

and let z 2 H

1

(


�

) be the solution

to the problem

8

>

>

<

>

>

:

�z = 0 in 


�

;

z = 0 on �

0

;

�

n

z = g on �

1

;

�

n

z = h on �

�

:

(20)

There exist some positive 
onstants denoted by 
 independent of �, g and h su
h that for all �

small enough

kzk

0;


�

� 
�

2

kh(�x)k

H

1=2

00

(�)

0

+ 
kgk

H

1=2

00

(�

1

)

0

;

jzj

1;


�

� 
�kh(�x)k

H

1=2

00

(�)

0

+ 
kgk

H

1=2

00

(�

1

)

0

;

kzk

1;
nD

� 
�

2

kh(�x)k

H

1=2

00

(�)

0

+ 
kgk

H

1=2

00

(�

1

)

0

:

Proof. The fun
tion z is split into z

1

+ z

2

respe
tively solutions to

8

<

:

�z

1

= 0 in R

2

n �

�

;

z

1

= 0 at 1;

�

n

z

1

= h on �

�

;

8

>

>

<

>

>

:

�z

2

= 0 in 


�

;

z

2

= �z

1

on �

0

;

�

n

z

2

= g � �

n

z

1

on �

1

;

�

n

z

2

= 0 on �

�

:

The fun
tion ~z

1

(x) = z

1

(�x)=� is solution to

8

<

:

�~z

1

= 0 in R

2

n �;

~z

1

= 0 at 1;

�

n

~z

1

= h(�x) on �:

By ellipti
 regularity, we have

k~z

1

k

W

1

(R

2

n�)

� 
kh(�x)k

H

1=2

00

(�)

0

:

Lemma 1 yields

j~z

1

j

1;

1

�

(
nD)

� 
�kh(�x)k

H

1=2

00

(�)

0

:

Then, a 
hange of variable brings

kz

1

k

0;


�

� 
�

2

kh(�x)k

H

1=2

00

(�)

0

;
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jz

1

j

1;


�

� 
�kh(�x)k

H

1=2

00

(�)

0

;

kz

1

k

1;
nD

� 
�

2

kh(�x)k

H

1=2

00

(�)

0

:

Moreover, we have by ellipti
 regularity

kz

2

k

1;


�

� 
kz

1

k

1;
nD

+ 
kgk

H

1=2

00

(�

1

)

0

;

whi
h 
ompletes the proof. �

5.2. Proof of Theorem 3. The result is a 
onsequen
e of Proposition 1 if we prove that

ku

�

� u

0

k

W

= O(�

2

) and that E

i

(�) = o(�

2

) for i = 1; 2; 3.

5.2.1. Estimate of the variation of the solution. It is an immediate appli
ation of Lemma 2 that

ku

�

� u

0

k

W

= O(�

2

):

5.2.2. Estimate of the remainders. We will denote by 
 any positive 
onstant independent of �.

(1) We have

jE

1

(�)j = �

�

�

�

�

Z

�

�

n

u

0

(�x)[(w

�

� h

�

)(�x)℄ds

�

�

�

�

� �k�

n

u

0

(�x)k

H

1=2

00

(�)

0

k[(w

�

� h

�

)(�x)℄k

H

1=2

00

(�)

� 
�k[e

�

(�x)℄k

H

1=2

00

(�)

;

where e

�

= w

�

� h

�

is solution to

8

>

>

<

>

>

:

�e

�

= 0 in 


�

;

e

�

= �h

�

on �

0

;

�

n

e

�

= ��

n

h

�

on �

1

;

�

n

e

�

= 0 on �

�

:

Denoting by B some ball 
ontaining �, we obtain by using the tra
e theorem

k[e

�

(�x)℄k

H

1=2

00

(�)

= inf


2R

k[e

�

(�x) + 
℄k

H

1=2

00

(�)

� 
 inf


2R

ke

�

(�x) + 
k

1;Bn�

� 
je

�

(�x)j

1;Bn�

:

A 
hange of variable and the ellipti
 regularity yield

k[e

�

(�x)℄k

H

1=2

00

(�)

� 
je

�

j

1;


�

� 
 inf


2R

ke

�

+ 
k

1;


�

� 
 inf


2R

kh

�

+ 
k

1;
nD

� 
jh

�

j

1;
nD

:

Next, a 
hange of variable and Lemma 1 yield

k[e

�

(�x)℄k

H

1=2

00

(�)

� 
�jH

�

j

1;

1

�

(
nD)

� 
�

2

k�

n

v

0

(�x)k

H

1=2

00

(�)

0

:

Finally,

jE

1

(�)j � 
�

3

:

(2) We have

jE

2

(�)j � �

2

k�

n

u

0

(�x)k

H

1=2

00

(�)

0

kq

�

� qk

H

1=2

00

(�)

� 
�

2

kq

�

� qk

H

1=2

00

(�)

:

By 
ontinuity of the operator T

�

, we have

kq

�

� qk

H

1=2

00

(�)

� 
k�

n

v

0

(�x)�rv

0

(0):nk

H

1=2

00

(�)

0

� 
k�

n

v

0

(�x)�rv

0

(0):nk

C

0

(�)

:

Yet, v

0

is of 
lass C

2

in a neighborhood of the origin. Thus,

kq

�

� qk

H

1=2

00

(�)

� 
� (21)
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and

jE

2

(�)j � 
�

3

:

(3) We have

jE

3

(�)j � �

2

k�

n

u

0

(�x)�ru

0

(0):nk

H

1=2

00

(�)

0

kqk

H

1=2

00

(�)

:

As u

0

is of 
lass C

2

in a neighborhood of the origin,

k�

n

u

0

(�x)�ru

0

(0):nk

H

1=2

00

(�)

0

� k�

n

u

0

(�x)�ru

0

(0):nk

C

0

(�)

� 
�:

Hen
e,

jE

3

(�)j � 
�

3

:

�

6. Numeri
al appli
ations

In this numeri
al study, we use Formula (19) to dete
t and lo
ate 
ra
ks with the help of

boundary measurements. The 
ontext is the one of the steady-state heat equation.

6.1. The inverse problem. Let 
 be a domain 
ontaining a perfe
tly insulating 
ra
k �

�

whose

lo
ation, orientation, shape and length are to be retrieved. We dispose of the temperature �

measured on the boundary � for a heat 
ux ' pres
ribed: � = u(�

�

)

j�

, where u(�

�

) is the

solution to the PDE

8

<

:

�u(�

�

) = 0 in 
 n �;

�

n

u(�

�

) = ' on �;

�

n

u(�

�

) = 0 on �:

(22)

To ensure well-posedness of the above system, we assume the normalization 
ondition

Z

�

'ds = 0

and we impose that the mean value of the solution is equal to zero:

Z


n�

�

u(�

�

)dx = 0:

In pra
ti
e, several measurements, 
orresponding to di�erent 
uxes, may be needed. But for

the 
larity of the presentation, let us 
onsider the simplest 
ase of one measurement.

6.2. The 
ost fun
tional and the topologi
al gradient. Sin
e the boundary 
onditions

(�; ') are overspe
i�ed, one 
an de�ne for any 
ra
k � � 
 two forward problems:

� the \Diri
hlet" problem:

8

<

:

�u

D

(�) = 0 in 
 n �;

u

D

(�) = � on �;

�

n

u

D

(�) = 0 on �;

(23)

� the \Neumann" problem:

8

<

:

�u

N

(�) = 0 in 
 n �;

�

n

u

N

(�) = ' on �;

�

n

u

N

(�) = 0 on �:

(24)

The solution to this latter system is de�ned up to an additive 
onstant, whi
h is determined by

the equation

Z


n�

u

N

(�)dx = 0: (25)

This 
ondition plays the same role as the fa
t of pres
ribing a Diri
hlet 
ondition on a part

of the boundary, whi
h was 
hosen for simpli
ity in the theoreti
al study. The a
tual 
ra
k
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�

�

is rea
hed (� = �

�

) when there is no mis�t between both solutions, that is, when the 
ost

fun
tional

J (�) = J(u

D

(�); u

N

(�)) =

1

2

ku

D

(�)� u

N

(�)k

2

L

2

(
)

(26)

vanishes. This is the so-
alled Kohn-Vogelius 
riterion [21℄. To 
ompute the 
orresponding

topologi
al gradient, we need to solve numeri
ally:

� the two dire
t problems on the safe domain

�

�u

D

= 0 in 
;

u

D

= � on �;

(27)

8

>

<

>

:

�u

N

= 0 in 
;

�

n

u

N

= ' on �;

Z




u

N

dx = 0;

(28)

whose solutions are denoted by u

D

and u

N

instead of u

D

(;) and u

N

(;) to simplify the

writing,

� two adjoint problems (de�ned on the safe domain too)

�

��v

D

= �(u

D

� u

N

) in 
;

v

D

= 0 on �;

(29)

8

>

<

>

:

��v

N

= +(u

D

� u

N

)� u

D

in 
;

�

n

v

N

= 0 on �;

Z




v

N

dx = 0;

(30)

with

u

D

=

1

meas (
)

Z




u

D

dx:

The above adjoint problems are derived dire
tly from their variational formulations (a quotient

fun
tional spa
e is needed to de�ne the Neumann problem). The existen
e of the solution to

Problem (30) 
omes from Equation (25). Using a ve
tor �eld U = (u

D

; u

N

), Corollary 4 provides

the following expression of the topologi
al asymptoti
 for that 
ost fun
tional and the insertion

of a small straight 
ra
k:

J (�

x;�;n

)� J (;) = ���

2

[(ru

D

(x):n)(rv

D

(x):n) + (ru

N

(x):n)(rv

N

(x):n)℄ + o(�

2

);

where �

x;�;n

is the line 
ra
k of length 2�, 
entered at the point x and of unit normal n. One


an also write the 
orresponding topologi
al gradient

g(x;n) = ��[(ru

D

(x):n)(rv

D

(x):n) + (ru

N

(x):n)(rv

N

(x):n)℄

as follows:

g(x;n) = n

T

M(x)n;

where M(x) is the symmetri
 matrix de�ned by

M(x) = ��sym (ru

D

(x)
rv

D

(x) +ru

N

(x)
rv

N

(x)):

The notation sym (X) stands for the symmetri
 part of the square matrix X: sym (X) =

(X + X

T

)=2 and the tensor produ
t of two ve
tors means U 
 V = UV

T

. A

ording to that

expression, g(x;n) is minimal at the point x when the normal n = n

1

is an eigenve
tor asso
iated

to the smallest eigenvalue �

1

(x) of the matrix M(x). Then, g(x;n

1

) = �

1

(x). Hen
eforth, we

will 
all topologi
al gradient this value.
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6.3. Numeri
al result in one iteration without noise. Let us now des
ribe a simple and

very fast numeri
al pro
edure. First, we solve the two dire
t problems and the two adjoint

problems (Diri
hlet and Neumann). Then, in ea
h 
ell of the mesh, we 
ompute the matrix

M(x) and its eigenvalues. By regarding the unknown 
ra
k as the addition of small straight


ra
ks whose intera
tions are negle
ted and by using the previous asymptoti
 analysis, one

expe
ts that 
ra
k to lie in the regions where the topologi
al gradient is the most negative.

Let 
 be the unit dis
 and �

�

be a line segment 
ra
k. The heat 
ux ' is imposed on � by

'(x) = x

2

, the se
ond 
oordinate of the point x. In this experiment, the 
ux inside the safe

domain is not parallel to the 
ra
k, so that only one measurement is needed for the re
onstru
tion

(see [4℄). We apply the pro
edure des
ribed above. The lo
ation of the unknown 
ra
k as well

as the topologi
al gradient are indi
ated in Figures 2 and 3. We observe that the most negative

values of the topologi
al gradient are lo
ated near the a
tual 
ra
k.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2. The unknown 
ra
k.

−1
0

1

−1

0

1
−3

−2

−1

0

x 10
7

−1 −0.5 0 0.5 1

−0.5

0

0.5

Figure 3. On the left: the topologi
al gradient ; on the right: superposition of

the a
tual 
ra
k and a negative isovalue of the topologi
al gradient.

6.4. Numeri
al results in one iteration with noise.

6.4.1. Case of a single 
ra
k. We fo
us here on simulated noisy measurements. A white noise

is added to the exa
t data. Figure 4 shows the results obtained for 5%, 10% and 20% of noise.

We observe that the inversion pro
edure is quite robust with respe
t to the presen
e of noise in

the measurements.
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−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4. Representation of a negative isovalue of the topologi
al gradient for

5%, 10% and 20% of noise, respe
tively.

6.4.2. Case of multi-
ra
ks. The 
omputation of the topologi
al gradient does not depend on

the number of 
ra
ks inside the domain. This remark is illustrated by the following experiment.

The a
tual 
ra
ks and the topologi
al gradient are represented in Figure 5. We use now two


uxes '

1

(x) = x

1

and '

2

(x) = x

2

. We take as a 
ost fun
tional the sum of the two quadrati


mis�ts. Hen
e, the matrix M(x) is assembled by adding the two 
orresponding 
ontributions.

We emphasize that these results are again obtained in only one iteration.

6.5. Identi�
ation of 
ra
ks with in
omplete data. It is a more realisti
 situation where

a part only of the border is a

essible to measurements. Let 
 be the unit dis
 with boundary

� = �

0

[�

1

. The heat 
ux ' is pres
ribed on � and the temperature � is measured on �

1

, here

a quarter of the whole boundary. For any 
ra
k � � 
, we 
onsider the two following problems:

� the \Neumann-Diri
hlet" problem:

8

>

>

<

>

>

:

�u

D

(�) = 0 in 
 n �;

u

D

(�) = � on �

1

;

�

n

u

D

(�) = ' on �

0

;

�

n

u

D

(�) = 0 on �;

(31)

� the \Neumann" problem:

8

<

:

�u

N

(�) = 0 in 
 n �;

�

n

u

N

(�) = ' on �;

�

n

u

N

(�) = 0 on �;

(32)
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−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 5. Respe
tively 5%, 10% and 20% of noise.

with the normalization 
ondition

Z


n�

u

N

(�)dx =

Z


n�

u

D

(�)dx:

We use the same 
ost fun
tional as before (see Equation (26)), but for the above �elds. Hen
e we

have the same topologi
al gradient expression and the numeri
al pro
edure remains un
hanged.

The results are represented in Figure 6. The 
ra
ks are lo
ated in a satisfa
tory manner.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6. Topologi
al gradient with in
omplete data (no noise).
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6.6. An iterative method. The algorithm 
onsists in inserting at ea
h iteration an insulating

element (that is, numeri
ally, an element whose thermal 
ondu
tivity is very small) where the

topologi
al gradient is the most negative. The pro
ess is stopped when the 
ost fun
tional does

not de
rease any more.

Algorithm

Initialization: Choose the initial domain 


0

and 
reate a mesh whi
h will remain �xed during

the pro
ess. That domain is identi�ed with the set of its �nite elements: 


0

= fx

n

; n = 1; :::; Ng.

Set k = 0.

Repeat:

(1) Solve the dire
t and adjoint problems in 


k

,

(2) Compute the topologi
al gradient g

k

,

(3) Sear
h for the minimum of the topologi
al gradient: y

k

= argmin(g

k

(x); x 2 


k

),

(4) Set 


k+1

= 


k

n fy

k

g,

(5) k  k + 1.

We wish here to re
over two 
ra
ks with the help of one 
ux '(x) = x

2

(
omplete data,

no additive noise). The �nal image and the 
onvergen
e history of the 
ost fun
tional are

represented in Figure 7.

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7
x 10

−3

Figure 7. On the left: the a
tual 
ra
ks and the re
onstru
ted 
ra
ks after a

few iterations ; on the right: the 
onvergen
e history of the 
riterion.

7. Con
lusion

The mathemati
al framework presented in this paper 
an be adapted to determine the sen-

sitivity with respe
t to the insertion of a small 
ra
k for a large 
lass of linear and ellipti


problems.

The topologi
al gradient leads to fast methods for dete
ting and lo
ating 
ra
ks in that it only

requires to solve the dire
t and adjoint problems and satisfa
tory results are obtained after a

small number of iterations performed on a �xed grid. These methods 
an provide a good initial

guess for more a

urate 
lassi
al shape optimization algorithms [22, 33℄.
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