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Abstract The topological asymptotic analysis provides the sensitivity of a given shape functional with respect

to an infinitesimal domain perturbation. Therefore, this sensitivity can be naturally used as a descent direction

in a structural topology design problem. However, according to the literature concerning the topological

derivative, only the classical approach based on flexibility minimization for a given amount of material, without

control on the stress level supported by the structural device, has been considered. In this paper, therefore,

we introduce a class of penalty functionals that mimic a pointwise constraint on the Von Mises stress field.

The associated topological derivative is obtained for plane stress linear elasticity. Only the formal asymptotic

expansion procedure is presented, but full justifications can be deduced from existing works. Then, a topology

optimization algorithm based on these concepts is proposed, that allows for treating local stress criteria.

Finally, this feature is shown through some numerical examples.

Keywords topological sensitivity, topological derivative, topology optimization, local stress criteria, Von

Mises stress

1 Introduction

Structural topology optimization is an expanding research field of computational mechanics which has been

growing very rapidly in the last years. For a survey on topology optimization methods, the reader may refer

to the review paper [17], or to the monographs [2,11,23]. A relatively new approach for this kind of problem

is based on the concept of topological derivative [15,18,33]. This derivative allows to quantify the sensitivity

of a given shape functional with respect to an infinitesimal topological domain perturbation, like typically the

nucleation of a hole. Thus, the topological derivative has been successfully applied in the context of topology

optimization [7,13,28], inverse problems [5,12,20,29] and image processing [9,25,24,26]. Concerning the theo-

retical development of the topological asymptotic analysis, the reader may refer to [30], for instance. However,

in the context of structural topology design, the topological derivative has been used as a descent direction

only for the classical approach based on minimizing flexibility for a given amount of material. Although widely

adopted, through this formulation the stress level supported by the structural device cannot be controlled.

This limitation is not admissible in several applications, because one of the most important requirements in

mechanical design is to find the lightest topology satisfying a material failure criterion. Even the methods

based on relaxed formulations [1,10,11] have been traditionally applied to minimum compliance problems. In

fact, only a few works dealing with local stress control can be found in the literature (see, for instance, [3,4,

14,16,19,31]). This can be explained by the mathematical and numerical difficulties introduced by the large

number of highly non-linear constraints associated to local stress criteria.

Following the original ideas presented in [8] for the Laplace equation, in this paper we introduce a class

of penalty functionals in order to approximate a pointwise constraint on the Von Mises stress field. The as-
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sociated topological derivative is then obtained for plane stress linear elasticity. We show that the obtained

topological asymptotic expansion can be used within a topology optimization algorithm, which allows for

treating local stress criteria. Finally, the efficiency of this algorithm is verified through some numerical ex-

amples. In particular, the obtained structures are free of geometrical singularity, unlike what occurs by the

compliance minimization approach. We recall that such singularities lead to stress concentrations which are

highly undesirable in structural design. For a detailed description of the stress concentration phenomenon, the

reader may refer to [22,32].

The paper is organized as follows. The plane stress linear elasticity problem and the proposed class of

Von Mises stress penalty functionals are presented in Section 2. The topological derivative associated to these

functionals is calculated in Section 3. The proposed topology design algorithm is described in Section 4. Finally,

Section 5 is dedicated to the numerical experiments.

2 Problem statement

In this Section we introduce a class of Von Mises stress penalty functionals under plane stress linear elasticity

assumptions.

2.1 The constrained topology optimization problem

Let D be a bounded domain of R
2 with Lipschitz boundary Γ . We assume that Γ is split into three disjoint

parts ΓD, ΓN and Γ0, where ΓD is of nonzero measure, and ΓN is of class C1. We consider the topology

optimization problem:

Minimize
Ω⊂D

IΩ(uΩ) (1)

subject to the state equations
8

>

>

<

>

>

:

−div(γΩσ(uΩ)) = 0 in D,

uΩ = 0 on ΓD,

γΩσ(uΩ)n = g on ΓN ,

σ(uΩ)n = 0 on Γ0,

(2)

and the constraint

σM (uΩ) ≤ σ̄M a.e. in Ω ∩ D̃. (3)

The notations used above are the following. The system (2) is understood in the weak sense, as this will be

the case throughout all the paper, and admits an unique solution

uΩ ∈ V = {u ∈ H1(D)2, u|ΓD
= 0}.

The material density γΩ is a piecewise constant function which takes two positive values:

γΩ =



γin in Ω,

γout in D \Ω.

In the applications, D \ Ω is occupied by a weak phase that approximates an empty region, thus we assume

that

γout ≪ γin. (4)

The stress tensor σ(uΩ), normalized to a unitary Young modulus, is related to the displacement field uΩ
through the Hooke law:

σ(u) = Ce(u),

where

e(u) =
∇u+ ∇uT

2

is the strain tensor, and

C = 2µII + λ(I ⊗ I)

is the elasticity tensor. Here, I and II are the second and fourth order identity tensors, respectively, and the

Lamé coefficients µ and λ are given in plane stress by

µ =
1

2(1 + ν)
, and λ =

ν

1 − ν2
,
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where ν is the Poisson ratio. The Neumann data g is assumed to belong to L2(ΓN )2. The Von Mises stress

σM (u) is given by

σM (u) =

r

1

2
B̃σ(u).σ(u) =

r

1

2
Bσ(u).e(u),

where

B̃ = 3II − (I ⊗ I) (5)

and

B = CB̃ = 6µII + (λ− 2µ)(I ⊗ I). (6)

The set D̃ is an open subset of D and σ̄M is a prescribed positive number. Finally, the objective functional

IΩ : V → R is assumed to admit a known topological derivative DT IΩ as defined in Section 2.3.

2.2 Penalization of the constraint

Problem (1)-(3) is very difficult to address directly because of the pointwise constraint. Therefore we propose

an approximation based on the introduction of a penalty functional. Let Φ : R+ → R+ be a nondecreasing

function of class C2. To enable proper justifications of the subsequent analysis, we assume further that the

derivatives Φ′ and Φ′′ are bounded. We consider the penalty functional:

JΩ(u) =

Z

D̃
γΩΦ(

1

2
Bσ(u).e(u))dx. (7)

Then, given a penalty coefficient α > 0, we define the penalized objective functional:

IαΩ(u) = IΩ(u) + αJΩ(u).

Henceforth we shall solve the problem:

Minimize
Ω⊂D

IαΩ(uΩ) subject to (2). (8)

We will see that solving (8) instead of (1)-(3) leads to feasible domains provided that α and Φ are appropriately

chosen, namely that the two following conditions are fulfilled:

– α is large enough,

– Φ′ admits a sharp variation around σ̄.

2.3 Topology perturbations

Given a point x0 ∈ D \ ∂Ω and a radius ε > 0, we consider a circular inclusion ωε = B(x0, ε), and we define

the perturbed domain (see Fig. 1):

Ωε =



Ω \ ωε if x0 ∈ Ω,

(Ω ∪ ωε) ∩D if x0 ∈ D \Ω.

We denote for simplicity (uΩε
, γΩε

) by (uε, γε) and (uΩ , γΩ) by (u0, γ0). Then, for all ε ∈ [0, 1], γε can be

expressed as:

γε =



γ0 in D \ ωε,

γ1 in ωε.

We note that γ0 and γ1 are two positive functions defined in D and constant in a neighborhood of x0. For all

ε ≥ 0, the state equations can be rewritten:

8

>

>

<

>

>

:

−div (γεσ(uε)) = 0 in D,

uε = 0 on ΓD,

γεσ(uε)n = g on ΓN ,

σ(uε)n = 0 on Γ0.

(9)

In order to solve (8), we are looking for an asymptotic expansion, named as topological asymptotic expansion,

of the form

IαΩε
(uε) − IαΩ(u0) = f(ε)DT I

α
Ω(x0) + o(f(ε)),
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where f : R+ → R+ is a function that goes to zero with ε, and DT I
α
Ω : D → R is the so-called topological

derivative of the functional IαΩ . Since such an expansion is assumed to be known for the objective functional

IΩ , we subsequently focus on the penalty functional JΩ . We adopt the simplified notation:

Jε(u) := JΩε
(u) =

Z

D̃
γεΦ(

1

2
Bσ(u).e(u))dx. (10)
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Fig. 1 Sketch of the working domain.

3 Topological sensitivity analysis of the Von Mises stress penalty functional

In this section, the topological sensitivity analysis of the penalty functional JΩ is carried out. We follow the

approach described in [8] for the Laplace problem. Here, the calculations are more technical, but the estimates

of the remainders detached from the topological asymptotic expansion are analogous. Hence we do not repeat

these estimates. The reader interested in the complete proofs may refer to [8].

Possibly shifting the origin of the coordinate system, we assume henceforth for simplicity that x0 = 0.

3.1 A preliminary result

The reader interested in the proof of the proposition below may refer to [6].

Proposition 1 Let V be a Hilbert space and ε0 > 0. For all ε ∈ [0, ε0), consider a vector uε ∈ V solution of

a variational problem of the form

aε(uε, v) = ℓε(v) ∀v ∈ V, (11)

where aε and ℓε are a bilinear form on V and a linear form on V, respectively. Consider also, for all ε ∈ [0, ε0),

a functional Jε : V → R and a linear form Lε(u0) ∈ V ′. Suppose that the following hypotheses hold.

1. There exist two numbers δa and δℓ and a function ε ∈ R+ 7→ f(ε) ∈ R such that, when ε goes to zero,

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)), (12)

(ℓε − ℓ0)(vε) = f(ε)δℓ+ o(f(ε)), (13)

lim
ε→0

f(ε) = 0, (14)

where vε ∈ V is an adjoint state satisfying

aε(ϕ, vε) = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V. (15)

2. There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + 〈Lε(u0), uε − u0〉 + f(ε)δJ1 + o(f(ε)), (16)

Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (17)

Then we have

Jε(uε) − J0(u0) = f(ε)(δa− δℓ+ δJ1 + δJ2) + o(f(ε)).
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3.2 Adjoint state

The bilinear and linear forms associated with Problem (9) are classically defined in the space V = {u ∈

H1(D)2, u|ΓD
= 0} by:

aε(u, v) =

Z

D
γεσ(u).e(v) dx ∀u, v ∈ V, (18)

ℓε(v) =

Z

ΓN

g.v ds ∀v ∈ V. (19)

At the point u0 (unperturbed solution), the penalty functional admits the tangent linear approximation Lε(u0)

given by:

〈Lε(u0), ϕ〉 =

Z

D̃
γεΦ

′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(ϕ)dx ∀ϕ ∈ V.

We define the function

k1 = Φ′(
1

2
Bσ(u0).e(u0))χD̃, (20)

where χD̃ is the characteristic function of D̃. Then the adjoint state is (a weak) solution of the boundary value

problem:
8

<

:

−div (γεσ(vε)) = +div (γεk1Bσ(u0)) in D,

vε = 0 on ΓD,

γεσ(vε)n = −γεk1Bσ(u0)n on ΓN ∪ Γ0.

(21)

3.3 Regularity assumptions

We make the following assumptions.

1. For any r1 > 0 there exists r2 ∈ (0, r1) such that every function u ∈ H1(D \B(x0, r2))
2 satisfying

8

<

:

−div (γ0σ(u)) = 0 in D \B(x0, r2),

u = 0 on ΓD,

γ0σ(uε)n = 0 on ΓN ∪ Γ0

belongs to W 1,4(D̃ \B(x0, r1))
2.

2. The load g is such that u0 ∈W 1,4(D̃)2.

Note that, by elliptic regularity, u0 and v0 are automatically of class C1,β , β > 0, in the vicinity of x0 provided

that x0 ∈ D \ ∂Ω \ ∂D̃.

Remark 1 The above assumption is satisfied in many situations, including nonsmooth domains, like for

instance in the following case:

– D is a Lipschitz polygon,

– ΓN ∩ ∂D̃ = ∅ and ΓD ∩ ∂D̃ = ∅,

– the interface ∂Ω \ ∂D is the disjoint union of smooth simple arcs,

– if a junction point between the interface and ∂D belongs to ∂D̃, then the Young modulus distribution around

this point is quasi-monotone (see the definition in [27]); in particular, if only one arc touches ∂D at this

point, it is sufficient that the angle defined by these curves in D \Ω is less than π.

We refer to [27] and the references therein for justifications and extensions.

3.4 Variation of the bilinear form

In order to apply Proposition 1, we need to obtain a closed form for the leading term of the quantity:

(aε − a0)(u0, vε) =

Z

ωε

(γ1 − γ0)σ(u0).e(vε)dx. (22)

In the course of the analysis, the remainders detached from this expression will be denoted by Ei(ε), i = 1, 2, ...

By setting ṽε = vε − v0 and assuming that ε is sufficiently small so that γε is constant in ωε, we obtain:

(aε − a0)(u0, vε) = (γ1 − γ0)(x0)

„Z

ωε

σ(u0).e(v0)dx+

Z

ωε

σ(u0).e(ṽε)dx

«

.
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x0 γ0(x0) γ1(x0)

Ω γin γout

D \ Ω γout γin

Table 1 Coefficients γ0(x0) and γ1(x0) according to the location of x0.

For the reader’s convenience, the values of γ0(x0) and γ1(x0) are reported in Table 1 (see also Fig. 1). Since

u0 and v0 are smooth in the vicinity of x0, we approximate σ(u0) and e(v0) in the first integral by their values

at the point x0, and write:

(aε − a0)(u0, vε) = (γ1 − γ0)(x0)

„

πε2σ(u0)(x0).e(v0)(x0) +

Z

ωε

σ(u0).e(ṽε)dx+ E1(ε)

«

.

As vε is solution of the adjoint equation (21), then the function ṽε solves

8

>

>

<

>

>

:

−div(γεσ(ṽε)) = 0 in ωε ∪ (D \ ωε),

[γεσ(ṽε)n] = −(γ1 − γ0) (k1Bσ(u0)n+ σ(v0)n) on ∂ωε,

ṽε = 0 on ΓD,

σ(ṽε)n = 0 on ΓN ∪ Γ0,

(23)

where [γεσ(ṽε)n] ∈ H−1/2(∂ωε)
2 denotes the jump of the normal stress through the interface ∂ωε. We recall

that, as before, the boundary value problem (23) is to be understood in the weak sense for ṽε ∈ H1(D)2. We

set S = S1 + S2, with

S1 = k1(x0)Bσ(u0)(x0) and S2 = σ(v0)(x0).

We approximate σ(ṽε) by σ(hSε ) solution of the auxiliary problem:
8

>

<

>

:

−div σ(hSε ) = 0 in ωε ∪ (R2 \ ωε),

[γεσ(hSε )n] = −(γ1 − γ0)(x0)Sn on ∂ωε,

σ(hSε ) → 0 at ∞.

(24)

In the present case of a circular inclusion, the tensor σ(hSε ) admits the following expression in a polar coordinate

system (r, θ):

– for r ≥ ε

σr(r, θ) = − (α1 + α2)
1 − γ

1 + ξγ

ε2

r2
−

1 − γ

1 + ηγ

„

4
ε2

r2
− 3

ε4

r4

«

(β1 cos 2θ + β2 cos 2(θ + δ)) , (25)

σθ(r, θ) = (α1 + α2)
1 − γ

1 + ξγ

ε2

r2
− 3

1 − γ

1 + ηγ

ε4

r4
(β1 cos 2θ + β2 cos 2(θ + δ)) , (26)

σrθ(r, θ) = −
1 − γ

1 + ηγ

„

2
ε2

r2
− 3

ε4

r4

«

(β1 sin 2θ + β2 sin 2(θ + δ)) , (27)

– for 0 < r < ε

σr(r, θ) = (α1 + α2) ξ
1 − γ

1 + ξγ
+ η

1 − γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + δ)) , (28)

σθ(r, θ) = (α1 + α2) ξ
1 − γ

1 + ξγ
− η

1 − γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + δ)) , (29)

σrθ(r, θ) = −η
1 − γ

1 + ηγ
(β1 sin 2θ + β2 sin 2(θ + δ)) , (30)

Some terms in the above formulas require explanation. The parameter δ denotes the angle between the eigen-

vectors of tensors S1 and S2,

αi =
1

2
(siI + siII) and βi =

1

2
(siI − siII), i = 1, 2,

where siI and siII are the eigenvalues of tensors Si for i = 1, 2. In addition, the constants ξ and η are respectively

given by

ξ =
1 + ν

1 − ν
, η =

3 − ν

1 + ν
,

and γ is the contrast, that is, γ = γ1(x0)/γ0(x0).
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From these elements, we obtain successively:

Z

ωε

σ(u0).e(ṽε)dx =

Z

ωε

σ(ṽε).e(u0)dx =

Z

ωε

σ(hSε ).e(u0)dx+ E2(ε).

Then approximating e(u0) in ωε by its value at x0 and calculating the resulting integral with the help of the

expressions (28)-(30) yields:

Z

ωε

σ(u0).e(ṽε)dx =

Z

ωε

σ(hSε ).e(u0)(x0)dx+ E2(ε) + E3(ε)

= −πε2ρ (k1TBσ(u0).e(u0) + Tσ(u0).e(v0)) (x0) + E2(ε) + E3(ε),

with

ρ =
γ1 − γ0
ηγ1 + γ0

(x0) and T = ηII +
1

2

ξ − η

1 + γξ
I ⊗ I. (31)

Finally, the variation of the bilinear form can be written in the form:

(aε − a0)(u0, vε) = −πε2(γ1 − γ0)(x0)ρ

„

k1ηBσ(u0).e(u0) +
1

2
k1

ξ − η

1 + γξ
trBσ(u0)tre(u0)

−
η + 1

γ − 1
σ(u0).e(v0) +

1

2

ξ − η

1 + γξ
trσ(u0)tre(v0)

«

(x0) + (γ1 − γ0)(x0)
3
X

i=1

Ei(ε). (32)

3.5 Variation of the linear form

Since here ℓε is independent of ε, it follows trivially that

(ℓε − ℓ0)(vε) = 0. (33)

3.6 Partial variation of the penalty functional with respect to the state

We now study the variation:

VJ1(ε) := Jε(uε) − Jε(u0) − 〈Lε(u0), uε − u0〉

=

Z

D̃
γε

»

Φ(
1

2
Bσ(uε).e(uε)) − Φ(

1

2
Bσ(u0).e(u0)) − Φ′(

1

2
Bσ(u0).e(u0))Bσ(u0).e(uε − u0)

–

dx.

By setting ũε = uε − u0, we can write:

VJ1(ε) =

Z

D̃
γε

»

Φ(
1

2
Bσ(u0).e(u0) +Bσ(u0).e(ũε) +

1

2
Bσ(ũε).e(ũε)) − Φ(

1

2
Bσ(u0).e(u0))

− Φ′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(ũε)

–

dx. (34)

Since uε is solution of the state equation (9), then by difference we find that ũε solves:

8

>

>

<

>

>

:

−div(γεσ(ũε)) = 0 in ωε ∪ (D \ ωε),

[γεσ(ũε)n] = −(γ1 − γ0)σ(u0)n on ∂ωε,

ũε = 0 on ΓD,

σ(ũε)n = 0 on ΓN ∪ Γ0.

(35)

By setting now S = σ(u0)(x0), we approximate σ(ũε) by σ(hSε ) solution of the auxiliary problem (24). It

comes:

VJ1(ε) =

Z

D̃
γε

»

Φ(
1

2
Bσ(u0).e(u0) +Bσ(u0).e(h

S
ε ) +

1

2
Bσ(hSε ).e(hSε )) − Φ(

1

2
Bσ(u0).e(u0))

− Φ′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(h

S
ε )

–

dx+ E4(ε). (36)
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If x0 ∈ D \ D̃, we obtain easily, using a Taylor expansion of Φ and the estimate |σ(hSε )(x)| = O(ε2) which

holds uniformly with respect to x a fixed distance away from x0, that VJ1(ε) = o(ε2). Thus we assume that

x0 ∈ D̃ (the special case where x0 ∈ ∂D̃ is not treated). In view of the decay of σ(hSε ) at infinity and the

regularity of u0 near x0, we write

VJ1(ε) =

Z

R2

γ∗ε

»

Φ(
1

2
Bσ(u0)(x0).e(u0)(x0) +Bσ(u0)(x0).e(h

S
ε ) +

1

2
Bσ(hSε ).e(hSε ))

− Φ(
1

2
Bσ(u0)(x0).e(u0)(x0)) − Φ′(

1

2
Bσ(u0)(x0).e(u0)(x0))Bσ(u0)(x0).e(h

S
ε )

–

dx+ E4(ε) + E5(ε),

with γ∗ε (x) = γ1(x0) if x ∈ ωε, γ
∗
ε (x) = γ0(x0) otherwise. The above expression can be rewritten as

VJ1(ε) =

Z

R2

γ∗ε

»

Φ(
1

2
B̃S.S + B̃S.σ(hSε ) +

1

2
B̃σ(hSε ).σ(hSε )) − Φ(

1

2
B̃S.S)

− Φ′(
1

2
B̃S.S)B̃S.σ(hSε )

–

dx+ E4(ε) + E5(ε).

We denote by VJ11(ε) and VJ12(ε) the parts of the above integral computed over ωε and R
2 \ωε, respectively.

Using the expressions (28)-(30), we find

VJ11(ε) = πε2γ1(x0)

»

Φ(
1

2
B̃S.S − ρTB̃S.S + ρ2

1

2
TB̃TS.S) − Φ(

1

2
B̃S.S) + ρΦ′(

1

2
B̃S.S)TB̃S.S

–

.

Next, we define the function independent of ε

ΣSρ (x) = σ(hSε )(εx). (37)

A change of variable yields

VJ12(ε) = ε2
Z

R2\ω
γ0(x0)

»

Φ(
1

2
B̃S.S + B̃S.ΣSρ +

1

2
B̃ΣSρ .Σ

S
ρ ) − Φ(

1

2
B̃S.S) − Φ′(

1

2
B̃S.S)B̃S.ΣSρ

–

dx.

We set

Ψρ(S) =

Z

R2\ω

»

Φ(
1

2
B̃S.S+ B̃S.ΣSρ +

1

2
B̃ΣSρ .Σ

S
ρ )−Φ(

1

2
B̃S.S)−Φ′(

1

2
B̃S.S)(B̃S.ΣSρ +

1

2
B̃ΣSρ .Σ

S
ρ )

–

dx. (38)

The extra term 1
2 B̃Σ

S
ρ .Σ

S
ρ has been added so that Ψρ(S) vanishes whenever Φ is linear. Thus we have

VJ12(ε) = ε2γ0(x0)

»

Ψρ(S) +
1

2
Φ′(

1

2
B̃S.S)

Z

R2\ω
B̃ΣSρ .Σ

S
ρ dx

–

.

Using the expressions (25)-(27), a symbolic calculation of the above integral provides

VJ12(ε) = ε2γ0(x0)

"

Ψρ(S) +
1

4
πρ2k1(x0)

 

5(2S.S − tr2S) + 3

„

1 + ηγ

1 + ξγ

«2

tr2S

!#

.

Besides, after a change of variable and rearrangements, Ψρ(S) reduces to

Ψρ(S) =

Z 1

0

Z π

0

1

t2
[Φ(s2M +∆(t, θ)) − Φ(s2M ) − Φ′(s2M )∆(t, θ)]dθdt, (39)

where

∆(t, θ) = ρ
t

2

»

(s2I − s2II)(2 + 3
1 + ηγ

1 + ξγ
) cos θ + 3(sI − sII)

2(2 − 3t) cos 2θ

–

+ ρ2
t2

4

»

3(sI + sII)
2(

1 + ηγ

1 + ξγ
)2 + (sI − sII)

2(3(2 − 3t)2 + 4 cos2 θ) + 6
1 + ηγ

1 + ξγ
(s2I − s2II)(2 − 3t) cos θ

–

,

s2M =
1

2
B̃S.S.

Finally we obtain:

V J1(ε) = πγ1(x0)

»

Φ(
1

2
B̃S.S − ρTB̃S.S + ρ2

1

2
TB̃TS.S) − Φ(

1

2
B̃S.S) + ρΦ′(

1

2
B̃S.S)TB̃S.S

–

+ γ0(x0)

"

Ψρ(S) +
1

4
πρ2k1(x0)

 

5(2S.S − tr2S) + 3

„

1 + ηγ

1 + ξγ

«2

tr2S

!#

+ E4(ε) + E5(ε). (40)
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3.7 Partial variation of the penalty functional with respect to the domain

The last term is treated as follows:

V J2(ε) := Jε(u0) − J0(u0)

=

Z

ωε∩D̃
(γ1 − γ0)Φ(

1

2
Bσ(u0).e(u0))dx

= πε2χD̃(x0)(γ1 − γ0)(x0)Φ(
1

2
Bσ(u0)(x0).e(u0)(x0)) + E6(ε).

3.8 Topological derivative

Like in [8] for the Laplace equation, we can prove that the reminders Ei(ε), i = 1, ..., 6 behave like o(ε2).

Therefore, after summation of the different terms according to Proposition 1 and a few simplifications, we

arrive at the final formula for the topological asymptotic expansion of the penalty functional. It is given by

Jε(uε) − J0(u0) = ε2DT JΩ(x0) + o(ε2)

with the topological derivative

DT JΩ = −π(γ1 − γ0) [ρk1TBS.E + (ρT − II)S.Ea]

+ πγ1χD̃

»

Φ(
1

2
B̃S.S − ρTB̃S.S + ρ2

1

2
TB̃TS.S) + ρk1TB̃S.S

–

+ γ0χD̃

"

Ψρ(S) +
1

4
πρ2k1

 

5(2S.S − tr2S) + 3

„

1 + ηγ

1 + ξγ

«2

tr2S

!#

− πχD̃γ0Φ(
1

2
B̃S.S). (41)

Formula (41) is valid for all x0 ∈ D \ ∂D̃ \ ∂Ω. We recall that ρ and T are given by (31); B̃, B, k1 and Ψρ(S)

are respectively given by (5), (6), (20), (39) and

S = σ(u0), E = e(u0), Ea = e(v0).

The coefficients γ0 and γ1 are given by Table 1. Moreover, u0 = uΩ is the solution of the state equation (2)

and v0 = vΩ is the solution of the adjoint equation (21) for ε = 0, that is,

8

<

:

−div (γ0σ(v0)) = +div (γ0k1Bσ(u0)) in D,

v0 = 0 on ΓD,

γ0σ(v0)n = −γ0k1Bσ(u0)n on ΓN ∪ Γ0.

(42)

Remark 2 For the particular case in which ν = 1/3, Formula (41) admits the simpler expression:

DT JΩ = −π(γ1 − γ0)
h

4ρk1s
2
M − (1 − 2ρ)S.Ea

i

+ πγ1χD̃

»

Φ((1 − 2ρ)2s2M ) + 4ρk1s
2
M

–

+ γ0χD̃

»

Ψρ(S) +
1

2
πρ2k1(5S.S − tr2S)

–

− πγ0χD̃Φ(s2M ),

where Ψρ(S) is given by (39) with

∆(t, θ) = ρ
t

2

h

5(s2I − s2II) cos θ + 3(sI − sII)
2(2 − 3t) cos 2θ

i

+ ρ2
t2

4

h

3(sI + sII)
2 + (sI − sII)

2(3(2 − 3t)2 + 4 cos2 θ) + 6(s2I − s2II)(2 − 3t) cos θ
i

and

ρ =
γ1 − γ0
2γ1 + γ0

(x0).

Remark 3 Formula (41) has some similarity with results proved in [30], where a theory is developed for a

broad class of elliptic state equations and shape functionals in three space dimensions, then it is applied to the

linear elasticity case. However, the shape functionals addressed in this context are linear or quadratic in σ(u),

and there is no background material (the inclusions are Neumann holes).
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4 A topology design algorithm

Given a real parameter p ≥ 1, we consider the penalty function (see Fig. 2):

Φp(t) = Θp(
t

σ̄2
M

)

with
Θp : R+ → R+,

t 7→ (1 + tp)1/p − 1.

It is clear that this function satisfies the required assumptions (see Section 2.2). The penalized problem that

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2 Function Θpn
for pn = 2n, n = 0, ..., 6.

we shall solve reads:

Minimize
Ω⊂D

IαΩ(uΩ) = IΩ(uΩ) + α

Z

D̃
γΩΦp(σM (uΩ)2)dx subject to (2). (43)

In practice, p must be chosen as large as possible, provided that the resolution of (43) can accommodate

with the sharp variation of Θ′
p around 1. In all the numerical examples, we take the value p = 32 which, after

several trials, proved to be a good compromise. In order to reduce the computer time, the function Ψρ has

been tabulated (see Fig. 3).

0
0.5

1
1.5

2
2.5

3 0

0.5

1

1.5

2

2.5

3

−2

0

2

4

6

8

Fig. 3 Function Ψρ for ρ = −1 (hole creation), p = 8 and ν = 0.3, with sI + sII in abscissa and sI − sII in ordinate.

The unconstrained minimization problem (43) is solved by using the algorithm devised in [7]. We briefly

describe this algorithm here. It relies on a level-set domain representation and the approximation of topological

optimality conditions by a fixed point method. Thus, the current domain Ω is characterized by a function
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ψ ∈ L2(D) such that Ω = {x ∈ D,ψ(x) < 0} and D \ Ω̄ = {x ∈ D,ψ(x) > 0}. We compute the topological

derivative DT I
α(Ω) = DT I(Ω) + αDT J(Ω) where DT J(Ω) is given by formula (41) with γ0 and γ1 chosen

according to Table 1. Then we set G(x) = DT I
α(Ω)(x) if x ∈ D \ Ω̄ and G(x) = −DT I

α(Ω)(x) if x ∈ Ω. We

define the equivalence relation on L2(D):

ϕ ∼ ψ ⇐⇒ ∃λ > 0, ϕ = λψ.

Clearly, the relation G ∼ ψ is a sufficient optimality condition for the class of perturbations under considera-

tion. We construct successive approximations of this condition by means of a sequence (ψn)n∈N verifying

ψ0 ∈ L2(D),

ψn+1 ∈ co(ψn, Gn) ∀n ∈ N.

Above, the convex hull co(ψn, Gn) applies to the equivalence classes, namely half-lines. Choosing representa-

tives of unitary norm for ψn, ψn+1 and Gn, we obtain the algorithm:

ψ0 ∈ S,

ψn+1 =
1

sin θn
[sin((1 − κn)θn)ψn + sin(κnθn)Gn] ∀n ∈ N.

The notations are the following: S is the unit sphere of L2(D), θn = arccos
〈Gn,ψn〉

‖Gn‖‖ψn‖
is the angle between

the vectors Gn and ψn, and κn ∈ [0, 1] is a step which is determined by a line search in order to decrease

the penalized objective functional. The iterations are stopped when this decrease becomes too small. At this

stage, if the optimality condition is not approximated in a satisfactory manner (namely the angle θn is too

large), an adaptive mesh refinement using a residual based a posteriori error estimate on the solution uΩn
is

performed and the algorithm is continued.

5 Numerical Experiments

Given a fixed multiplier β > 0, we consider the objective functional

IΩ(uΩ) = |Ω| + βK(uΩ),

with |Ω| the area of Ω and the compliance

K(uΩ) =

Z

ΓN

g.uΩds.

Unless otherwise specified, the domain D̃ is equal to the whole computational domainD. The material densities

are γin = 1 and γout = 10−3. The Poisson ratio is ν = 0.3. The topological derivative of the area is obvious,

and that of the compliance is known (see [6,21]). In each case, the initial guess is the full domain Ω0 = D.

5.1 Bar

Our first example is a bar under traction (see Fig. 4). The computational domain is the unit square and

the load is uniformly distributed along two line segments of length 0.4. For comparison, we first address the

unconstrained situation (i.e. α = 0). We choose β = 1, so that the theoretical optimal domain is known as the

horizontal central band of width 0.4. Next, we want to retrieve this domain with the local stress constraint

σM (uΩ) ≤ σ̄M = 1, and β comprised between 0 and 1. We choose β = 0.2 and α = 1, then α = 10. We observe

that the obtained domains satisfy the constraint, but they are slightly bigger than the theoretical optimum.

This is a consequence of the fact that Θp(s) is slightly positive for s < 1. For those three computations,

the CPU time used on a PC with 2.4 GHz processor is equal to 90s, 110s and 114s, respectively, for a mesh

containing 12961 nodes.
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Fig. 4 Bar: boundary conditions and obtained domains for (α, β) = (0, 1), (α, β) = (1, 0.2) and (α, β) = (10, 0.2),
respectively.

5.2 Michell’s structure

We study a variant of Michell’s structure constructed in order to avoid any stress singularity at the initial stage.

The working domain is a rectangle of size 65 × 80 perforated by two circular holes (see Fig. 5, left). On the

left one a Dirichlet boundary condition is prescribed. On the right one a surface load of density g = (0,−1)T

is applied. We address the unconstrained and constrained cases successively (see Fig. 5 and Fig. 6). In the

second case, we take σ̄M = 6, β = 0.04 and α = 100 then α = 500. In the first case, we take β = 0.078 so as

to obtain a structure with similar area to the previous case (α = 100). Some numerical data are reported in

Table 2 for comparison. The last column indicates the number of nodes in the final mesh.

Fig. 5 Michell’s structure: boundary conditions and unconstrained solution with the corresponding Von Mises stress
distribution.

α β Area Compliance IΩ(uΩ) maxΩ
σM (uΩ)

σ̄M
CPU time (s) Mesh

0 0.078 1007 11453 1901 1.68 188 13599
100 0.04 1007 11979 1486 1.02 319 17124
500 0.04 1062 11616 1527 0.97 176 13599

Table 2 Michell’s structure.

5.3 Eyebar

In this example, the working domain is a rectangle of size 16 × 8 deprived of a circular hole of radius 1.5.

On the border of this hole, a horizontal load of density g(x, y) = ((y2 − 1.52)χx≤0, 0) is applied, where (x, y)
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Fig. 6 Michell’s structure: optimal domain for α = 100 (left) and Von Mises stress distribution, optimal domain for
α = 500 (right).

denotes a local coordinate system whose origin is at the center of the hole. On the right side, the structure is

clamped along a segment of length 2 (see Fig. 7). Here and in the subsequent examples, the subdomain D̃ is

represented in gray. Again, we show results obtained in the unconstrained (α = 0) and constrained (α = 500,

σ̄M = 5) cases, with β adjusted in order to obtain similar areas (see Fig. 7 and Table 3).

Fig. 7 Eyebar: boundary conditions and obtained domains for α = 0 and α = 500.

α β Area Compliance maxΩ
σM (uΩ)

σ̄M
CPU time (s) Mesh

0 0.25 46.3 187 1.31 169 13520
500 0.2 46.4 193 0.99 206 13520

Table 3 Eyebar.

5.4 L-beam

We now turn to a classical problem containing a geometrical singularity, namely the L-shaped beam (see Fig.

8 and 9 and Table 4). The length of the two branches is 2.5. The structure is clamped at the top, and a unitary

pointwise force is applied at the middle of the right tip. We first show a result obtained in the unconstrained

case (α = 0, β = 0.01). Then we take the parameters α = 104, β = 0.01 and three different values for σ̄M : 40,

30 and 25. We observe that, in these last three cases, the reentrant corner is rounded, unlike what occurs in

the first case, when minimizing the compliance without stress constraint.
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Fig. 8 L-beam: boundary conditions and obtained design in the unconstrained case (top), obtained designs with the
penalization for σ̄M = 40, σ̄M = 30 and σ̄M = 25 (bottom, from left to right).
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Fig. 9 L-beam with σ̄M = 30: convergence history for the area, the compliance and the area of the region in which the
constraint is violated (from left to right).

α β σ̄M Area Compliance maxΩ
σM (uΩ)

σ̄M
CPU time (s) Mesh

104 10−2 40 1.74 186 1.01 891 26693
104 10−2 30 1.93 203 0.99 672 26708
104 10−2 25 2.05 181 1.01 536 26678

Table 4 L-beam.

5.5 U-beam

This last example consists in an U-shaped structure included in a box of size 3× 2.5 (see Fig. 10). We show a

result obtained with the parameters β = 0.3, σ̄M = 4 and α = 104. We get maxΩ
σM (uΩ)
σ̄M

= 1.02 on a mesh

of 28385 nodes, in 363s of CPU time.

5.6 Conclusion

In the above examples, we have minimized a linear combination of the area and the compliance of an elastic

structure while prescribing an upper bound on the Von Mises stress at each point. The two basic ingredients

of our approach are the use of the topological derivative as a descent direction and of a penalty method for the

constraint imposition. This is in contrast with the existing literature on the topic, where either dual methods

are implemented [14,16,19,31], with the well-known difficulties related to the irregularity of the Lagrange

multiplier, or a simple power law penalization is considered [3,4], generally leading to unfeasible domains.
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Fig. 10 U-beam: boundary conditions, obtained design and zoom near a reentrant corner.

Furthermore, the topological derivative does not rely on any relaxation, which is a quite delicate issue for local

criteria. Finally, the computational cost of this algorithm is remarkably low.
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26. I. Larrabide, R.A. Feijóo, A.A. Novotny & E. Taroco. Topological Derivative: A Tool for Image Processing. Com-

puters & Structures 36(13-14):1386-1403, 2008.
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