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Abstract. This work deals with the topological optimization of periodic microstructures in
order to meet a specified macroscopic behavior. The multi-scale modeling is based on a well-
established variational constitutive framework, where the macroscopic strain and stress tensors
at each point of the macroscopic continuum are defined as volume averages of their microscopic
counterparts over a Representative Volume Element (RVE). Then, we derive a simple analytical
expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to topological
microstructural changes of the underlying material. The obtained topological derivative is used
together with a level-set domain representation to devise a topology optimization algorithm.
Finally, some numerical examples on the synthesis of microstructures are presented.

1. Introduction

The estimation, in an accurate way, of the constitutive behavior of a continuum body submit-
ted to a given excitation is of paramount importance in science and engineering. For many years
this question was appropriately answered through the so-called phenomenological constitutive
theories. However, with the progress of technology and the largest demand of knowledge on the
materials behavior, the initial question became difficult or even impossible to be answered by
using only phenomenological theories. In order to deal with this problem, the so-called multi-
scale theories have been developed. In this context, the behavior prediction of heterogeneous
materials from the knowledge of their microscopic structure (micro-structure) is a subject of
intensive research in applied mathematics and computational mechanics. The starting point
on the theoretical development of such ideas can be found in the pioneering works [22, 23, 30].
Some years later, these concepts were used to develop the first multi-scale constitutive models
[10, 40, 45]. In the beginning, these models were used to simulate the macroscopic behavior of
a material submitted to a given microscopic physical phenomenon [6, 7, 21, 34, 35, 38]. More
recent applications of this theory are carried out by complex computational simulations, mainly
based on the finite element method [31], in research areas such as the numerical modelling of
the arterial tissue [44] and human bone [39], the nonlinear behavior of porous metals [19] and
the microstructural evolution and phase transition in the solidification process of metals [12].

In this context, the ability to accurately predict the macroscopic mechanical behavior from
the corresponding microscopic properties as well as its sensitivity to changes in microstructure
becomes essential in the analysis and potential purpose-design and optimization of heterogeneous
media. Such concepts have been successfully used, for instance, in [2, 27, 28] by means of a
relaxation-based technique in the design of microstructural topologies that produce negative
macroscopic Poisson’s ratio. Based on the fundamental papers [9, 46], the multi-scale theory
was originally applied to the topology design of load bearing structures, leading to the so-called
homogenization approach to topology optimization. Since then, this methodology has been
used in a wide range of multi-physics topology design problems (see, for instance, the review
paper [15]). In particular, the homogenization approach has also been applied to the topology
optimization of smart materials, where the idea is to design a micro-structure that meet a
specific macroscopic response. Important contributions in this field can be found in [26, 41, 42].
The main drawback of the homogenization approach to topology optimization is that it usually
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produces designs with large regions consisting of perforated material. In order to deal with this
problem, a penalization of intermediate densities is often introduced.

In contrast to the above mentioned approaches, an analytical expression for the sensitivity
of the two-dimensional macroscopic elasticity tensor to topological microstructural changes of
the underlying material was proposed in [20]. The macroscopic linear elastic response was
estimated by means of a well-established homogenization-based multi-scale constitutive theory
for elasticity problems [18, 31] where the macroscopic strain and stress tensors at each point of
the macroscopic continuum are defined as the volume averages of their microscopic counterparts
over a Representative Volume Element (RVE) of material associated with that point. The
obtained analytical formula was derived by making use of the concept of topological derivative
[11, 14, 43] within a variational formulation of the adopted multi-scale theory. The mathematical
notions of topological asymptotic expansion allows the exact calculation of the sensitivity of a
given shape functional with respect to infinitesimal domain perturbations such as the insertion
of voids, inclusions, source terms or even cracks. This concept has proved extremely useful in the
treatment of a wide range of problems, namely, topology optimization [1, 4, 36], inverse analysis
[5, 16, 24] and image processing [8, 25, 29], and has became a subject of intensive research.
Concerning the theoretical development of the topological asymptotic analysis, the reader may
refer to [3, 17, 33], for instance.

In this paper we extend the results presented in [20] by considering as topological perturbations
the nucleation of a small inclusion, instead of a hole, at the microscopic level. The proposed
sensitivity leads to a symmetric fourth order tensor field over the RVE that measures how the
macroscopic elasticity coefficients estimated within the multi-scale framework change when a
small circular inclusion is introduced at the microscopic level. The final format of the proposed
analytical formula is strikingly simple. By using the classical rules of differential calculus, it can
be directly applied to obtain the topological derivative of a class of shape functionals defined
in terms of the macroscopic elasticity coefficients. Moreover, following the ideas introduced in
[4], the derived topological sensitivities are used to devise a topology design algorithm based on
a level-set domain representation. We present several numerical examples in order to illustrate
the application of the obtained results to the synthesis of microstructures that meet a specified
macroscopic behavior.

The paper is organized as follows. The multi-scale constitutive framework adopted in the
estimation of the macroscopic elasticity tensor is briefly described in Section 2. The sensitivity
of the macroscopic constitutive response to topological microstructural changes is analyzed in
Section 3. The topology optimization algorithm is presented in Section 4. The application of
the topological derivative to the synthesis of microstructures is shown in Section 5 through some
numerical experiments. Finally, some concluding remarks are made in Section 6.

2. Multi-scale modelling

In this section we briefly describe the adopted multi-scale constitutive model for plane stress
elasticity problems. For more details the reader may refer, for instance, to [20]. By using a
homogenization-based variational framework, it is possible to estimate the macroscopic elasticity
tensor from a complete description of the local Representative Volume Element (RVE) of the
material. This constitutive modelling approach follows closely the strategy presented, among
others, in [18, 31, 32], whose axiomatic variational structure is described in detail in [13]. In
this context, the main idea is based on the assumption that any point x of the macroscopic
continuum (refer to Fig. 1) is associated to a local RVE whose domain Ωµ, with boundary
∂Ωµ, has characteristic length Lµ, much smaller than the characteristic length L of the macro-
continuum domain Ω. For simplicity, we consider that the RVE domain consists of a matrix Ωm

µ ,

containing inclusions of different materials occupying a domain Ωi
µ (see Fig.1). The formulation

is completely analogous if the RVE contains voids instead.
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Figure 1. Macroscopic continuum with a locally attached microstructure.

The constitutive modelling used here is based on five basic assumptions: (i) the strain aver-
aging relation; (ii) further constraints upon the kinematically admissible displacement fields of
the RVE; (iii) the mechanical equilibrium of the RVE; (iv) the stress averaging relation and (v)
the Hill-Mandel Principle of Macro-Homogeneity [23, 30], which ensures the energy consistency
between the so-called micro- and macro-scales.

We start by using the concept of homogenization to define the macroscopic strain tensor ε at
a point x of the macroscopic continuum as the volume average of its microscopic counterpart εµ
over the RVE:

ε :=
1

Vµ

∫

Ωµ

∇suµ =
1

Vµ

∫

∂Ωµ

uµ ⊗s n , (1)

where Vµ denotes the total volume of the RVE, uµ is the microscopic displacement field of the
RVE, n is the outward unit normal to the boundary ∂Ωµ, ∇

s is the symmetric gradient operator
and ⊗s denotes the symmetric tensor product between vectors. Now, without loss of generality,
it is possible to decompose uµ into a sum

uµ (y) = u+ uµ (y) + ũµ (y) , (2)

of a constant (rigid) RVE displacement coinciding with the macroscopic displacement u(x), a
linear field uµ (y) := εy, and a displacement fluctuation field ũµ(y).

Considering the classical linear elastic constitutive law to describe the behavior of the RVE
matrix and inclusions, the microscopic stress tensor field σµ(ξ) satisfies

σµ(ξ) = Cµ∇
sξ , (3)

where Cµ is the fourth order elasticity tensor. We assume that the matrix and the inclusions
are isotropic and homogeneous materials, thus Cµ is defined as:

Cµ :=
Eµ

1− ν2µ
[(1− νµ) I+ νµ (I⊗ I)] , (4)

with Eµ and νµ denoting the local Young modulus and Poisson ratio of the microscopic material,
respectively. These parameters are given by

Eµ :=

{
Em

µ if y ∈ Ωm
µ

Ei
µ if y ∈ Ωi

µ
and νµ :=

{
νmµ if y ∈ Ωm

µ

νiµ if y ∈ Ωi
µ

. (5)

If the RVE has more than one inclusion, the parameters Ei
µ and νiµ are considered piecewise

constant over Ωi
µ. In addition, in (4), we use I and I to denote the second and fourth order

identity tensors, respectively.
In view of the Hill-Mandel Principle of Macro-Homogeneity we have that the RVE mechan-

ical equilibrium problem consists of finding, for a given macroscopic strain ε, an admissible
microscopic displacement fluctuation field ũµ ∈ Uµ, such that

∫

Ωµ

σµ(uµ) · ∇
sη +

∫

Ωµ

σµ(ũµ) · ∇
sη = 0 ∀η ∈ Uµ , (6)
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where, according to (3), σµ(uµ) = Cµ∇
suµ and σµ(ũµ) = Cµ∇

sũµ, and the space Uµ of the
admissible displacement fluctuations over the RVE is defined as:

Uµ ⊂ Ũµ :=

{
v ∈ [H1(Ωµ)]

2 :

∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0

}
. (7)

Once the problem (6) has been solved, the macroscopic stress tensor σ is obtained as the
volume average of the microscopic stress field σµ(uµ) = σµ(uµ) + σµ(ũµ) over the RVE, i.e.,

σ =
1

Vµ

∫

Ωµ

σµ(uµ) . (8)

For a complete characterization of the multi-scale constitutive model, we need to choose a

suitable kinematic constraint in the space of admissible displacement fluctuations Ũµ [13]. Here,
we impose a periodic boundary condition on the displacement fluctuation field, namely

Uµ :=
{
ũµ ∈ Ũµ : ũµ(y

+) = ũµ(y
−) ∀(y+, y−) ∈ P

}
, (9)

where P is the set of pairs of opposite points on the boundary ∂Ωµ.
Finally, a closed form of the homogenized elasticity tensor C can be obtained by using the

methodology suggested in [31], which is based on rewriting the problem (6) as a superposition of
linear problems associated with the individual Cartesian components of the macroscopic strain
tensor. The components of the full homogenized elasticity tensor C, in the orthonormal basis
{e1, e2} of the two-dimensional Euclidean space, can be written as

(C)ijkl =
1

Vµ

∫

Ωµ

(σµ(uµkl
))ij . (10)

By virtue of (6), the canonical microscopic displacement field uµkl
associated with the macro-

scopic strain εkl = ek ⊗ el satisfies the equilibrium equation
∫

Ωµ

σµ(uµkl
) · ∇sη = 0 ∀η ∈ Uµ , (11)

and, in view of (2), can be written as:

uµkl
− u− (ek ⊗ el)y = ũµkl

∈ Uµ . (12)

3. The topological sensitivity of the homogenized elasticity tensor

A closed formula for the sensitivity of the homogenized elasticity tensor C to the nucleation
of a circular inclusion centered at an arbitrary point of the RVE domain is presented in this
section.

3.1. Preliminary concepts. Let ψ be a shape functional depending on a given domain param-
eterized with respect to ρ. The parameter ρ defines the size of the topological perturbation, so
that the original domain is retrieved when ρ=0. Let us assume that ψ has sufficient regularity
so that the following expansion is possible

ψ (ρ) = ψ (0) + f (ρ)DTψ + o (f (ρ)) , (13)

where ψ(0) is the functional evaluated in the original domain (for ρ = 0) and ψ(ρ) denotes the
value of the functional for the topologically perturbed domain (for ρ > 0). In addition, f(ρ) is a
non-negative function such that f(ρ) → 0 when ρ→ 0 and o (f (ρ)) contains all terms of higher
order in f(ρ). The term DTψ of (13) is called the topological derivative of ψ at the unperturbed
(original) domain.

To begin the topological sensitivity analysis in the present multi-scale context, it is appropriate
to define the RVE obtained after a topological perturbation characterized by the nucleation a
small inclusion of radius ρ denoted by Iρ. More precisely, the perturbed domain is obtained
when a circular hole Hρ of radius ρ is introduced at an arbitrary point ŷ ∈ Ωµ. Next, this region
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is replaced by a circular inclusion Iρ with different material property. Then, the perturbed

domain is defined as Ωµρ =
(
Ωµ\Hρ

)
∪ Iρ (refer to Fig. 2).

n

ρ

y^

Figure 2. Topological perturbation at the microscopic level.

In the presence of the inclusion the microscopic constitutive tensor is defined by

C
ρ
µ :=

{
Cµ in Ωµ \ Hρ

γCµ in Iρ
, (14)

where the parameter γ ≥ 0 is the contrast between the material properties of the original domain
Ωµ and the inclusion Iρ. With this definition in hand, we denote the effective microscopic stress
in the domain Ωµρ by

σρµ(ξ) = C
ρ
µ∇

sξ =

{
σµ(ξ) in Ωµ \ Hρ

γσµ(ξ) in Iρ
. (15)

In view of the above expression, the components of the macroscopic elasticity tensor associated
to Ωµρ can be obtained as (see (10))

(Cρ)ijkl =
1

Vµ

∫

Ωµ

(σρµ(u
ρ
µkl

))ij , (16)

where the canonical microscopic displacement field uρµkl
associated to the topologically perturbed

domain satisfies ∫

Ωµ

σρµ(u
ρ
µkl

) · ∇sη = 0 ∀η ∈ Uµ , (17)

for k, l = 1, 2 (in the two-dimensional case). Taking into account the additive decomposition
of the microscopic displacement field (2), we have that the canonical solution uρµkl

of the above
variational equation can be written as:

uρµkl
− u− (ek ⊗ el)y = ũρµkl

∈ Uµ , (18)

where ũρµkl
is the displacement fluctuation field associated to the perturbed domain Ωµρ and to

the macroscopic strain ek ⊗ el.

3.2. Topological derivative calculation. As an extension of the previous result derived in
[20], the purpose here is to obtain the topological asymptotic expansion of the macroscopic
constitutive response associated to the nucleation of an inclusion, instead of a hole, at the
microscopic level. In view of expressions (10) and (16) we have that the difference between the
ijkl-components of the tensors Cρ and C is given by:

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρµ(u
ρ
µkl

) · (ei ⊗ ej)−
1

Vµ

∫

Ωµ

σµ(uµkl
) · (ei ⊗ ej) . (19)

By using classical tensorial relations, the above expression can be rewritten as

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρµ(u
ρ
µkl

) · ∇s((ei ⊗ ej)y)−
1

Vµ

∫

Ωµ

σµ(uµkl
) · ∇s((ei ⊗ ej)y) . (20)

In addition, in view of the additive decomposition of the displacement fluctuation fields (12)
and (18), we have

∇s((ei ⊗ ej)y) = ∇s(uµij
− ũµij

) = ∇s(uρµij
− ũρµij

) . (21)
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Plugging these expressions into (20) yields

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρµ(u
ρ
µkl

) · ∇s(uµij
− ũµij

)−
1

Vµ

∫

Ωµ

σµ(uµkl
) · ∇s(uρµij

− ũρµij
) . (22)

Taking into account that ũµij
and ũ

ρ
µij belong to Uµ, from the equilibrium equation (11) and

(17), together with (3) and (15), it comes

(Cρ −C)ijkl =
1

Vµ

∫

Ωµ

C
ρ
µ∇

suρµkl
· ∇suµij

−
1

Vµ

∫

Ωµ

Cµ∇
suµkl

· ∇suρµij
. (23)

By using the symmetry relations C
ρ
µ∇su

ρ
µkl

· ∇suµij
= C

ρ
µ∇suµij

· ∇su
ρ
µkl

and (C)ijkl = (C)klij,
we derive a closed expression for the difference between the ijkl-components of the tensors C

ρ

and C in terms of an integral over the RVE domain:

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

(σρµ(uµij
)− σµ(uµij

)) · ∇suρµkl
. (24)

Now, taking into account the definition of the original and perturbed microscopic domain,
the above expression can be equivalently written in terms of an integral over the perturbation
Iρ as:

(Cρ − C)ijkl =
γ − 1

Vµ

∫

Iρ

σµ(uµij
) · ∇suρµkl

. (25)

The first order asymptotic expansion of the above quantity for an arbitrarily shaped inclusion can
be obtained in a similar way as in [3]. However there are some differences in the functional spaces
and boundary conditions involved. Thus we briefly reproduce the derivation for completeness.
For simplicity we restrict ourselves to circular inclusions. The starting point in the derivation
is to make the splitting:

(Cρ − C)ijkl =
γ − 1

Vµ

[∫

Iρ

σµ(uµij
) · ∇suµkl

+

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
)

]
. (26)

Then we approximate the first integral as follows:

(Cρ − C)ijkl =
γ − 1

Vµ

[
πρ2σµ(uµij

)(ŷ) · ∇suµkl
(ŷ) + E1(ρ) +

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
)

]
.

(27)
Here and in the sequel, the terms Ei(ρ) denote some remainders whose behavior will be discussed
later. Next, we estimate the variation σ

ρ
µ(u

ρ
µkl

− uµkl
) by the solution σ

ρ
µ(w

ρ
kl) of the exterior

problem:




−div (σρµ(w
ρ
kl)) = 0 in Iρ ∪ (R2 \ Hρ) ,

[[σρµ(w
ρ
kl)]]n = −(1− γ)σµ(uµkl

)(ŷ)n on ∂Iρ ,
σ
ρ
µ(w

ρ
kl) → 0 at ∞ ,

(28)

where J(·)K denotes the jump of the function (·) across the matrix/inclusion interface ∂Iρ, defined
as

[[(·)]] := (·)|m − (·)|i , (29)

with subscriptsm and i associated with quantities evaluated on the matrix and inclusion bound-
aries, respectively. Then, the last integral term in (26) can be written as:

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
) =

∫

Iρ

∇suµij
· σµ(u

ρ
µkl

− uµkl
)

=

∫

Iρ

∇suµij
· σµ(w

ρ
µkl

) + E2(ρ)

= ∇suµij
(ŷ) ·

∫

Iρ

σµ(w
ρ
kl) + E2(ρ) + E3(ρ) . (30)
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In the present case of a circular inclusion, the nominal stress tensor σµ(w
ρ
kl) admits the

following expressions in a polar coordinate system (r, θ) whose origin is at the center ŷ of the
inclusion :

• for r ≥ ρ

σrµ(r, θ) = −
1

2
(σIµ + σIIµ )

1− γ

1 + αγ

ρ2

r2
−

1

2
(σIµ − σIIµ )

1− γ

1 + βγ

(
4
ρ2

r2
− 3

ρ4

r4

)
cos 2θ , (31)

σθµ(r, θ) =
1

2
(σIµ + σIIµ )

1− γ

1 + αγ

ρ2

r2
−

3

2
(σIµ − σIIµ )

1− γ

1 + βγ

ρ4

r4
cos 2θ , (32)

σrθµ (r, θ) = −
1

2
(σIµ − σIIµ )

1− γ

1 + βγ

(
2
ρ2

r2
− 3

ρ4

r4

)
sin 2θ , (33)

• for 0 < r < ρ

σrµ(r, θ) =
1

2
(σIµ + σIIµ )

1− γ

1 + αγ
α+

1

2
(σIµ − σIIµ )

1− γ

1 + βγ
β cos 2θ , (34)

σθµ(r, θ) =
1

2
(σIµ + σIIµ )

1− γ

1 + αγ
α−

1

2
(σIµ − σIIµ )

1− γ

1 + βγ
β cos 2θ , (35)

σrθµ (r, θ) = −
1

2
(σIµ − σIIµ )

1− γ

1 + βγ
β sin 2θ , (36)

where σIµ and σIIµ are the eigenvalues of the tensor σµ(ukl)(ŷ). In addition, the constants α and
β are respectively given by

α =
1 + νµ

1− νµ
, β =

3− νµ

1 + νµ
. (37)

The substitution of the previous expressions for the nominal stress σµ(w
ρ
kl), (31)–(36), allows

the integral term in (30) to be analytically calculated, resulting in:
∫

Iρ

σµ(w
ρ
kl) = −πρ2ζTσµ(uµkl

)(ŷ) , (38)

with the scalar value ζ and the fourth order tensor T given by

ζ = −
1− γ

1 + βγ
and T = βI+

1

2

α− β

1 + γα
I⊗ I . (39)

By plugging (38) into (30) then using (27), we arrive at an estimate for the difference between
the ijkl-components of the tensors Cρ and C, namely

(Cρ − C)ijkl =
πρ2

Vµ
(1− γ)ζ

(
1 + β

1− γ
σµ(uµkl

) · ∇suµij
+

1

2

α− β

1 + γα
tr(σµ(uµkl

))tr(∇suµij
)

)
(ŷ)

+(γ − 1)

3∑

i=1

Ei(ρ) . (40)

We can prove in a very similar way as in [3] that
∑3

i=1
Ei(ρ) = o(ρ2). Thus, we deduce that the

scaling function f can be defined as

f(ρ) =
|Iρ|

|Ωµ|
=
πρ2

Vµ
, (41)

and the topological derivative of the tensor C is given in this case by

(DTC)ijkl = (1− γ)ζ

(
1 + β

1− γ
σµ(uµkl

) · ∇suµij
+

1

2

α− β

1 + γα
tr(σµ(uµkl

))tr(∇suµij
)

)
. (42)

This expression can be rewritten in the compact form

(DTC)ijkl = Hγσµ(uµij
) · σµ(uµkl

) , (43)
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where the fourth order tensor Hγ is defined as

Hγ := −
1

Eµ

(
1− γ

1 + αγ

)[
4I−

1− γ(α − 2β)

1 + βγ
(I⊗ I)

]
. (44)

Finally, the topological asymptotic expansion of the homogenized elasticity tensor reads

C
ρ = C+

πρ2

Vµ
DTC+ o(ρ2) . (45)

Remark 1. The polarization tensor Hγ exhibit an explicit dependency on the contrast γ. Then,
it is possible to analyze the limit cases.

• Rigid inclusion (γ → ∞):

H∞ =
1

Eµα

[
4I+

α− 2β

β
(I⊗ I)

]
. (46)

• Hole (γ → 0):

H0 = −
1

Eµ
[4I− (I⊗ I)]. (47)

Remark 2. We note that the above expression (for γ → 0) coincides with the result derived in
[20].

4. A micro-structure topology design algorithm

In this section we present a topology design algorithm based on the topological asymptotic
expansion of the homogenized elasticity tensor (45). The optimization problem that we shall
solve is stated as:

Minimize
Ωm

µ ⊂Ωµ

J(Ωm
µ ) = h(C) + λ

∣∣Ωm
µ

∣∣
Vµ

, (48)

where h(C) is a function of the homogenized elasticity tensor C and λ is a fixed Lagrange
multiplier corresponding to a volume constraint. Since the topological sensitivity is nothing but
a derivative with respect to the volume fraction of the perturbation, then, we can apply directly
the rules of differential calculus. Thus, according to the topological asymptotic expansion of
the homogenized elasticity tensor given by (45), the topological derivative of the cost function
J(Ωm

µ ) can be obtained by using the chain rule. Therefore, it comes

DTJ = 〈Dh(C),DTC〉+ λ , (49)

where the term 〈Dh(C),DTC〉 should be understood as the derivative of the function h(C) with
respect to the tensor C in the direction of DTC.

The problem (48) is solved by using the algorithm devised in [4]. For completeness, we
briefly describe this algorithm here. It relies on a level-set domain representation [37] and the
approximation of topological optimality conditions by a fixed point iteration. Thus, the current
domain Ωm

µ is characterized by a function ψ ∈ L2(Ωµ) such that Ωm
µ = {y ∈ Ωµ, ψ(y) < 0} and

Ωi
µ = {y ∈ Ωµ, ψ(y) > 0}. We compute the topological derivative DTJ(Ω

m
µ ) through formula

(49), according to a given contrast γ. Then we set

g(y) =

{
DTJ(Ω

m
µ )(y) if y ∈ Ωi

µ

−DTJ(Ω
m
µ )(y) if y ∈ Ωm

µ
. (50)

After that, we define the equivalence relation on L2(Ωµ):

ψ ∼ ψ′ ⇔ ∃ τ > 0, ψ′ = τψ . (51)

Clearly, the relation g ∼ ψ is a sufficient optimality condition for the class of perturbations
under consideration. Then, we construct successive approximations of this condition by means
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of a sequence (ψn)n∈N verifying

ψ0 ∈ L2(Ωm
µ ) ,

ψn+1 ∈ co(ψn, gn) ∀n ∈ N .
(52)

In the above construction, the convex hull co(ψn, gn) applies to the equivalence classes, namely
half-lines. Choosing representatives of unitary norm for ψn, ψn+1 and gn, we obtain the following
algorithm:

ψ0 ∈ S ,

ψn+1 =
1

sin θn
[sin((1 − κn)θn)ψn + sin(κnθn)gn] ∀n ∈ N .

(53)

The notations are the following: S is the unit sphere of L2(Ωµ), θn = arccos〈gn, ψn〉 is the angle
between the vectors gn and ψn, and κn ∈ [0, 1] is a step which is determined by a line search in
order to decrease the objective functional. The iterations are stopped when this decrease becomes
too small. At this stage, if the optimality condition is not approximated in a satisfactory manner
(namely the angle θn is too large), an uniform mesh refinement is performed and the algorithm
is continued. Finally, in order to construct the discrete finite element approximation of the space
Uµ (see (9)), we use the finite element implementation proposed in [19].

5. Numerical examples

In this section, we apply the algorithm described in Section 4 to the synthesis of microstruc-
tures in order to meet a specified macroscopic behavior.

Due to the symmetry relations, the homogenized elasticity tensor C can be written in the
matricial form

C =




(C)
1111

(C)
1122

(C)
1112

(C)1122 (C)2222 (C)2212
(C)1112 (C)2212 (C)1212


 . (54)

For an orthotropic constitutive behavior, the effective material properties, namely, Young mod-
ulus, bulk modulus, shear modulus and Poisson ratio, can be extracted directly from the compo-
nents (C−1)ijkl of the tensor C

−1. Indeed, the matricial representation of C−1 in the orthotropic
case reads

C−1 =




(C−1)
1111

(C−1)
1122

0
(C−1)

1122
(C−1)

2222
0

0 0 (C−1)
1212


 =




1
E1

−ν12
E1

0

−ν21
E2

1
E2

0

0 0 1
G


 , (55)

where ν12 and ν21 are the effective Poisson ratios, G is the effective shear modulus and E1, E2

are the effective Young moduli for each canonical direction e1,2. Since we want to optimize these
quantities, then we define h(C) as a function of C−1. We consider two particular classes of such
functions. In each case, a pair of given second order tensors ϕ1 and ϕ2 is given.

• The first one is defined as

h(C) = C
−1ϕ1 · ϕ2 , (56)

and the topological derivative of the associated cost function J reads

DTJ = −(C−1(DTC)C
−1)ϕ1 · ϕ2 + λ . (57)

• The second type of function is defined as

h(C) =
C
−1ϕ1 · ϕ2

C−1ϕ1 · ϕ1

+
C
−1ϕ2 · ϕ1

C−1ϕ2 · ϕ2

, (58)

whose associated topological derivative reads

DTJ = −
(C−1(DTC)C

−1)ϕ1 · [(C
−1ϕ1 · ϕ1)ϕ2 − (C−1ϕ1 · ϕ2)ϕ1]

(C−1ϕ1 · ϕ1)2

−
(C−1(DTC)C

−1)ϕ2 · [(C
−1ϕ2 · ϕ2)ϕ1 − (C−1ϕ2 · ϕ1)ϕ2]

(C−1ϕ2 · ϕ2)2
+ λ . (59)
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We start by fixing the RVE geometry, which is represented by the unit square Ωµ = (0, 1) ×
(0, 1). The Young modulus and the Poisson ratio associated to the micro-cell are respectively
given by Em

µ = 1, Ei
µ = 0.01 and νmµ = νiµ = 0.3. The level-set initialization shown in fig. (3) is

defined as

ψ0 =
1

N

[
cos2(π(x− x0)) cos

2(π(y − y0))− 0.5
]
, (60)

where N is the normalization constant. In all cases we have fixed (x0, y0) = (0.5, 0.5) unless
otherwise specified. A regular initial mesh with 3281 nodes and 6400 three-noded finite elements
is used to discretize the RVE domain, as shown in fig. (3).

Figure 3. Initial guess (left) and initial mesh (right).

5.1. Basic cases. We consider a function h(C) of the form given by (56). Although the algo-
rithm converges on the initial mesh (an angle θn < 1o is obtained) in each case, we perform an
uniform refinement in order to improve the accuracy of the final result. The final mesh contains
12961 nodes and 25600 three-noded finite elements.

5.1.1. Horizontal rigidity maximization. We choose ϕ1 = ϕ2 = e1⊗ e1. Then, the function h(C)
is equal to

h(C) = (C−1)
1111

. (61)

In addition we fix λ = 10. The obtained result is shown in fig. (4) and the convergence history
of the cost function and the angle θn can be seen in fig. (5). Here the mesh refinement has been
performed at iteration 9, which can been seen in the convergence history of θn.

Figure 4. Maximization of the horizontal rigidity.
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Figure 5. Convergence history for the horizontal rigidity maximization: cost
function (left) and angle θn (right).

5.1.2. Bulk modulus maximization. In this case, we choose ϕ1 = ϕ2 = e1 ⊗ e1 + e2 ⊗ e2. The
function h(C) is

h(C) = (C−1)
1111

+ 2(C−1)
1122

+ (C−1)
2222

. (62)

We take λ = 20. The obtained result is shown in fig. (6).

Figure 6. Maximization of the bulk modulus.

5.1.3. Shear modulus maximization. Finally, we take ϕ1 = ϕ2 = e1 ⊗ e2 + e2 ⊗ e1. In this case,
the function h(C) reduces to

h(C) = 4(C−1)
1212

. (63)

The Lagrange multiplier is chosen as λ = 50. The obtained result is shown in fig. (7). To
illustrate the periodic behavior of the topology optimization process, we change the initial guess
by fixing (x0, y0) = (0.1, 0.4), as shown in fig. (8, left). Then, we obtain the result presented in
fig. (8, middle and right), which represents the same micro-structure as the previous one (fig.
(7)).

Figure 7. Maximization of the shear modulus.
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Figure 8. Maximization of the shear modulus considering a different initial guess.

5.2. Poisson ratio optimization. In all cases from now on, we perform two steps of uniform
mesh refinement, resulting in 51521 nodes and 102400 three-noded finite elements. The Lagrange
multiplier associated to the volume constraint is λ = 0. We deal with four cases associated to
the Poisson ratio optimization. In the first two cases we consider the function h(C) of the form
(56). In the last two cases, the function h(C) is given by (58).

5.2.1. Minimization of a modified Poisson ratio. In this first case, we take ϕ1 = e1 ⊗ e1 and
ϕ2 = −e2 ⊗ e2. Thus, according to (56) the function h(C) is given by

h(C) = −(C−1)1122 . (64)

The obtained result is shown in fig. (9). The matricial representation of the obtained homoge-
nized elasticity tensor at the end of the optimization process is given by

C =




0.0825 −0.0308 0
−0.0308 0.0825 0

0 0 0.0105


 , (65)

which provides a negative Poisson ratio, namely, ν = −0.3740.

Figure 9. Minimization of a modified Poisson ratio.

5.2.2. Maximization of the modified Poisson ratio. In this second case, we take ϕ1 = e1⊗e1 and
ϕ2 = e2 ⊗ e2, that is,

h(C) = (C−1)
1122

. (66)

The obtained result is shown in fig. (10). The matricial representation of the homogenized
elasticity tensor obtained at the end of the optimization process is given by

C =




0.0469 0.0368 0
0.0368 0.0469 0

0 0 0.0098


 , (67)

which corresponds to the Poisson ratio ν = 0.7847.
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Figure 10. Maximization of the modified Poisson ratio.

5.2.3. Poisson ratio minimization. Now, we use ϕ1 = e1 ⊗ e1 and ϕ2 = −e2 ⊗ e2. Then, taking
into account (58), the function h(C) is defined as

h(C) = −
(C−1)

1122

(C−1)1111
−

(C−1)
1122

(C−1)2222
. (68)

The obtained result is shown in fig. (11). The matricial representation of the corresponding
homogenized elasticity tensor is given by

C =




0.1939 −0.0669 0
−0.0669 0.1939 0

0 0 0.0311


 , (69)

which results in the negative Poisson ratio ν = −0.3452. In this case, the algorithm does
not converge well (θn ≈ 7o), probably due to an ill-conditioning of this problem. However,
by performing another step of uniform mesh refinement we obtain a better convergence of the
algorithm with θn < 5o and a Poisson ratio ν = −0.4118. The resulting topology for this
particular case is presented in fig. (12) together with the convergence history of the cost function
h(C).

Figure 11. Minimization of the Poisson ratio.
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Figure 12. Minimization of the Poisson ratio: final topology (left) and conver-
gence history of the cost function (right).

5.2.4. Poisson ratio maximization. Finally, in this last case, we choose ϕ1 = e1 ⊗ e1 and ϕ2 =
e2 ⊗ e2. According to (58), the function h(C) is now defined as

h(C) =
(C−1)1122
(C−1)

1111

+
(C−1)1122
(C−1)

2222

. (70)

The obtained result is shown in fig. (13). The resulting homogenized elasticity tensor is given
by

C =




0.1565 0.1363 0
0.1363 0.1565 0

0 0 0.1162


 , (71)

which provides a near one Poisson ratio, namely, ν = 0.8711.

Figure 13. Maximization of the Poisson ratio.

6. Conclusion

An algorithm for the topological design of periodic microstructures has been proposed in
this work, by using a level-set method together with the concept of topological derivative. To
estimate the macroscopic behavior of a general microstructure we apply a well-established multi-
scale variational constitutive framework, where the macroscopic strain and stress tensors at each
point of the macroscopic continuum are defined as the volume averages of their microscopic coun-
terparts over a Representative Volume Element. The topological sensitivity of the macroscopic
constitutive response – a symmetric fourth order tensor field over the RVE domain – has been
derived by applying the theory of topological asymptotic expansion. The analytical expression
for the sensitivity measures how the estimated macroscopic elasticity tensor changes when a
small circular inclusion is introduced at the micro-scale. The devised algorithm was used in
several numerical examples in the optimum topology design of periodic microstructures in order
to meet a specified macroscopic behavior. The application of the proposed methodology to other
types of multi-scale models is in progress.
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