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Abstract. The aim of the topological sensitivity analysis is to determine an asymptotic ex-
pansion of a design functional when creating a small hole inside the domain. In this work, such
an expansion is obtained for a certain class of nonlinear PDE systems of order 2 in dimensions
2 and 3 with a Dirichlet condition prescribed on the boundary of an arbitrarily shaped hole.
Some examples of such operators are presented.
Key words. shape optimization, topological sensitivity, nonlinear PDE.

Résumé. L’analyse de sensibilité topologique consiste à rechercher un développement asymp-
totique d’une fonctionnelle de forme par rapport à la création d’un petit trou dans le domaine.
Dans ce travail, on établit un tel développement pour une certaine famille d’EDP non linires
d’ordre 2 en dimensions 2 et 3 et une condition de Dirichlet imposée au bord d’un trou de forme
quelconque. Des exemples d’opérateurs de ce type sont présentés.
Mots-clés. optimisation de forme, sensibilité topologique, EDP non linéaires.

1. Introduction

The topological sensitivity analysis aims to provide an asymptotic expansion of a shape
functional with respect to the size of a small hole created inside the domain. For a criterion
j(Ω) = JΩ(uΩ) where Ω ⊂ R

N (N = 2 or 3) and uΩ is the solution of a set of partial differential
equations defined over Ω, this expansion can be generally written in the form

j(Ω \ (x0 + ρω)) − j(Ω) = f(ρ)g(x0) + o(f(ρ)). (1)

In this expression, ρ and x0 denote respectively the radius and the center of the hole, ω is a
fixed domain containing the origin and f(ρ) is a positive function going to zero with ρ. The
function g is commonly called “topological gradient”, or “topological derivative”.

The first asymptotic analyses of solutions of boundary value problems defined in singularly
perturbed domains go back to the works of Il’in [9] and Nazarov [16] who introduced the methods
of matched and compound asymptotic expansions, respectively. Since that times, these meth-
ods have been developed towards rather complicated situations (see the books [10, 14]), even
including some nonlinear problems (see also the original paper [13]) and have been applied to the
asymptotic study of special objective functions, namely the energy integral and the eigenvalues
of the operator. This concept of topological sensitivity of a shape functional was introduced in
the field of shape optimization by Schumacher [24] who calculated the topological derivative of
the compliance in linear elasticity and used it for locating the best places to remove matter in
the structure. Then several methods have been worked out to derive the topological asymptotic
expansion (1) for various problems and general cost functions. The most significant are briefly
recalled below.

The first one was proposed by Sokolowski and Zochowski [25], and further developed by
Novotny et al. [20]. The principle is to start from the variation of the shape functional cor-
responding to an infinitesimal growth of an existing hole, which is given by the classical shape
optimization theory [15, 26], and then to pass to the limit when the initial hole vanishes. The
main difficulty lies in the determination of a sufficiently accurate approximation of the spatial
derivatives of the solution on the border of the hole, which are involved in the shape derivative.
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Another approach, instigated by Masmoudi [12], consists in reformulating the problem in a fixed
domain by means of a truncation technique. Then, a generalization of the adjoint method is
used to evaluate the variation of the criterion. This framework enabled to derive the topological
asymptotic expansions for several problems: linear elasticity [5], Poisson [6], Stokes [7], quasi-
Stokes [8] and Helmholtz [23, 22] equations. The last contributions we shall cite in this list are
the papers of Nazarov and Sokolowski [17, 18, 19], placed in the context of a PDE with linear
and homogeneous differential operator. The first one deals with more general shape functionals
in 3D by means of an appropriate approximation of the solution in the sense of weighted Hölder
norms. The two others concern the peculiar case of a Dirichlet condition on the hole in 2D for
which the function f(ρ) = | ln ρ|−1 goes very slowly to zero. The authors obtained higher order
terms by using a tricky extension of the operator concentrating the perturbation at a point (see
also [10, 14] for the application of the methods of matched and compound asymptotic expansions
at an arbitrary order). However, the related numerical procedure remains to be developed.

The present paper addresses the case of a state equation associated to a differential operator
of the form

P (u) = −∆̃u+ Φ(u),

where u is a vector field, ∆̃ is a linear and homogeneous differential operator of order 2 and Φ is a
possibly nonlinear function mapping an element of H1(Ω) to an element of H1(Ω)′ and satisfying
additional technical assumptions. This class includes notably the linear operators cited before, a
nonlinear Helmholtz equation and the Navier-Stokes equations for incompressible fluids. For this
latter case, the reader is referred to [2] for a complete proof. An homogeneous Dirichlet condition
is prescribed on the hole. In order to avoid a truncation which would raise technical difficulties
because of the nonlinearity, the PDE is reformulated in the whole domain with the solution
extended by zero inside the hole. This leads to a singularly perturbed variational problem
requiring a further generalization of the adjoint method. In 3D, the solution is approximated
following the methodology of compound asymptotic expansions combined with the solution of
the exterior limit problem with the help of a single layer potential. This approximation is valid in
the sense of the Sobolev norms, which are sufficient to treat the most standard shape functionals.
It is proved that the topological gradient depends only on the principal part ∆̃ of the operator
and on the shape of the hole through a polarization tensor. The dimension N = 2 is the so-called
critical dimension (according to the terminology of [14]) because of the logarithmic behavior of
the fundamental solution. The dominant part of the solution is not driven by boundary layers,
which results in the fact that the topological gradient is independant of the shape of the hole.

The paper is organized as follows. The problem of interest is formulated in Section 2. For
simplicity, the scalar case with ∆̃ = ∆ is first considered, then generalized. The adjoint method
is described in Section 3. The asymptotic analysis and the main results are presented in Section
4. Some examples of shape functionals are exhibited. For the sake of readability, all technical
proofs are reported in Section 5. Section 6 is devoted to the application of the previous results
to the nonlinear Helmholtz equation.

2. Problem presentation

2.1. The initial boundary value problem. Let Ω be an open, bounded and connected subset
of R

N , N = 2 or 3, with smooth boundary Γ and consider a function Φ that maps an element of
H1(O) to an element of H1(O)′ for any open and bounded subset O of R

N . To insure that this
function is well-defined, we assume that the following property holds: if O = O1 ∪O2 ∪ (∂O1 ∩
∂O2), O1 ∩ O2 = ∅, then for all u, v ∈ H1(O) we have

< Φ(u), v >H1(O)′,H1(O)=< Φ(u|O1
), v|O1

>H1(O1)′,H1(O1) + < Φ(u|O2
), v|O2

>H1(O2)′,H1(O2) .
(2)
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Given σ ∈ L2(Ω), we consider a scalar field u0 ∈ H1
0 (Ω) which is assumed to be the unique

solution of the PDE
{

−∆u0 + Φ(u0) = σ in Ω,
u0 = 0 on Γ.

(3)

For reasons that will appear later, we suppose that σ is continuous in Ω, that u0 ∈ H2
loc(Ω)

and that the map u ∈ H1
0 (Ω) 7→ Φ(u) ∈ H−1(Ω) is Fréchet-differentiable at the point u0. The

variational formulation of the above problem reads
{

u0 ∈ H1
0 (Ω),

F0(u0) = 0,
(4)

where F0 is the map defined by






F0 : H1
0 (Ω) −→ H−1(Ω),

< F0(u), v > =

∫

Ω
∇u.∇vdx+ < Φ(u) − σ, v > ∀u, v ∈ H1

0 (Ω).
(5)

Here and in all the sequel, the brackets < ., . > denote the duality product between H−1(Ω) and
H1

0 (Ω).

2.2. The perturbed boundary value problem. Let ω be an open and bounded subset of
R

N containing the origin, with smooth and connected boundary ∂ω, and let x0 ∈ Ω. For
any sufficiently small parameter ρ > 0, consider the perforated domain Ωρ = Ω \ ωρ where
ωρ = x0 + ρω. Possibly shifting the origin of the coordinate system, we assume for convenience
that x0 = 0. The perturbed field uρ ∈ H1

0 (Ωρ) is supposed to be of regularity H2 in the vicinity
of ωρ and to be the unique solution of the system







−∆uρ + Φ(uρ) = σ in Ωρ,
uρ = 0 on Γ,
uρ = 0 on ∂ωρ.

(6)

We define now the map






Fρ : H1
0 (Ω) −→ H−1(Ω),

< Fρ(u), v > = < F0(u), v > +

∫

∂ωρ

∂nuρvds +

∫

ωρ

σvdx ∀u, v ∈ H1
0 (Ω). (7)

Due to the Green formula, uρ satisfies
{

uρ ∈ H1
0 (Ω), uρ|ωρ

= 0,

Fρ(uρ) = 0.
(8)

In this system, uρ stands actually for the extension by zero inside ωρ of the function uρ defined
previously. The same notation has been kept to simplify the writing. That convention, consisting
in considering as canonical the imbedding H1

0 (Ωρ) →֒ H1
0 (Ω), will be implicitly used throughout

all the paper.

2.3. The topological sensitivity problem. We consider a cost functional j(ρ) = Jρ(uρ)
where Jρ is a differentiable map from H1

0 (Ω) into R. We wish to study the asymptotic behavior
of the variation j(ρ)−j(0) when ρ tends to zero. To do so, we start by introducing an appropriate
adjoint method.

Remark 1. The Dirichlet condition on Γ could be replaced without any influence on the topo-
logical sensitivity analysis by any boundary condition such that Problems (3) and (6) remain
well-posed in the sense of existence, uniqueness and elliptic regularity. This can be seen in the
proofs, which require only a continuous dependence of the solutions with respect to the data.
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3. An appropriate adjoint method

The asymptotic expansion of the cost functional will be provided by the following theorem,
presented here in an abstract setting with suitable hypotheses. The checking of these assump-
tions for the problem presented above will be carried out in Sections 4 and 5.

Theorem 1. Let V be a Hilbert space on the real field. For all ρ ∈ R+, we consider

• a differentiable map Fρ : V → V ′,
• an element uρ ∈ V satisfying

Fρ(uρ) = 0, (9)

• a differentiable functional Jρ : V → R.

We assume that there exists v0 ∈ V, called adjoint state, solving

< DF0(u0)ϕ, v0 >V ′,V = −DJ0(u0)ϕ ∀ϕ ∈ V. (10)

We suppose moreover that there exist four real numbers δF 1, δF 2, δJ1 and δJ 2, as well as a
function f(ρ) tending to zero with ρ such that, when ρ→ 0,

< Fρ(uρ) − F0(uρ), v0 > = f(ρ)δF 1 + o(f(ρ)), (11)

< F0(uρ) − F0(u0) −DF0(u0)(uρ − u0), v0 > = f(ρ)δF 2 + o(f(ρ)), (12)

Jρ(uρ) − J0(uρ) = f(ρ)δJ1 + o(f(ρ)), (13)

J0(uρ) − J0(u0) −DJ0(u0)(uρ − u0) = f(ρ)δJ2 + o(f(ρ)). (14)

Then we have the asymptotic expansion

Jρ(uρ) − J0(u0) = f(ρ)(δF 1 + δF 2 + δJ1 + δJ2) + o(f(ρ)).

Proof. Thanks to Equation (9) we can write

Jρ(uρ) − J0(u0) = Jρ(uρ) − J0(u0)+ < Fρ(uρ) − F0(u0), v0 > .

Next, Equations (11), (12), (13) and (14) yield

Jρ(uρ) − J0(u0) = DJ0(u0)(uρ − u0) + f(ρ)(δJ1 + δJ2) + o(f(ρ))

+ < DF0(u0)(uρ − u0), v0 > +f(ρ)(δF 1 + δF 2) + o(f(ρ)).

Using Equation (10) we obtain the announced result. �

4. Main results

Our purpose now is to show that Theorem 1 applies to derive the topological sensitivity
expression for the problem described in Section 2. We present here the different steps of the
asymptotic analysis, leading to the main results of the paper gathered in Theorems 2, 3 and 4.
To simplify the presentation, all technical proofs are reported in Section 5.

Theorem 1 will be applied to the family of maps (Fρ)ρ≥0 defined by (5) and (7). The functional
space involved is V = H1

0 (Ω). For convenience, we introduce the notation

Ru(v) = Φ(u+ v) − Φ(u). (15)

Let us first consider the three-dimensional case (N = 3).

4.1. Topological sensitivity in 3D. The first step of the asymptotic analysis consists in
determining an appropriate approximation of the variation uρ − u0.
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4.1.1. Asymptotic behavior of the solution.

(1) Approximation by the solution of an exterior problem. We split the variation of the
solution into

uρ − u0 = hρ + rρ, (16)

where hρ and rρ solve






−∆hρ = 0 in R
3 \ ωρ,

hρ → 0 at ∞,
hρ = −u0 on ∂ωρ,

and






−∆rρ +Ru0+hρ
(rρ) = −Ru0

(hρ) in Ωρ,
rρ = −hρ on Γ,
rρ = 0 on ∂ωρ.

The dominant part of uρ − u0 for the needed norms is expected to be provided by hρ.
The remainder rρ will be estimated later. Next, we set Hρ(x) = hρ(ρx), which solves







−∆Hρ = 0 in R
3 \ ω,

Hρ → 0 at ∞,
Hρ = −u0(ρx) on ∂ω.

(2) Approximation of the boundary condition on the hole. We split Hρ into Hρ = H + Sρ

(H is expected to be the leading term) with







−∆H = 0 in R
3 \ ω,

H → 0 at ∞,
H = −u0(0) on ∂ω,

and






−∆Sρ = 0 in R
3 \ ω,

Sρ → 0 at ∞,
Sρ = −u0(ρx) + u0(0) on ∂ω.

That function H can be explicited with the help of a single layer potential [3]:

H(x) =

∫

∂ω
E(x− y)η(y)ds(y) ∀x ∈ R

3 \ ω,

where the fundamental solution of the Laplace operator in 3D is

E(x) =
1

4π|x|
and the density η ∈ H−1/2(∂ω) is the unique solution of the boundary integral equation

∫

∂ω
E(x− y)η(y)ds(y) = −u0(0) ∀x ∈ ∂ω. (17)

4.1.2. Asymptotic behavior of the cost functional. We have to determine f(ρ), δF 1, δF 2, δJ1 and
δJ2 such that Equations (11)-(14) hold true. The values of δJ1 and δJ2 are given in Section 4.6
for some examples of cost functional. We assume for the moment that δF 2 = 0 and we focus on
the calculus of δF 1. According to Equation (7), we have

< Fρ(uρ) − F0(uρ), v0 > =

∫

∂ωρ

∂nuρv0ds+

∫

ωρ

σv0dx.

Replacing uρ by u0 + hρ + rρ, making a change of variable and replacing successively Hρ by
H + Sρ and v0(ρx) by v0(0) + [v0(ρx) − v0(0)], we obtain

< Fρ(uρ) − F0(uρ), v0 > = ρ

(
∫

∂ω
∂nHds

)

v0(0) +

4
∑

i=1

Ei(ρ)
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with

E1(ρ) =

∫

∂ωρ

∂nu0v0ds+

∫

ωρ

σv0dx,

E2(ρ) =

∫

∂ωρ

∂nrρv0ds,

E3(ρ) = ρ

∫

∂ω
∂nSρv0(ρx)ds,

E4(ρ) = ρ

∫

∂ω
∂nH[v0(ρx) − v0(0)]ds.

Next, due to the jump relation of the single layer potential, we have ∂nH = −η on ∂ω. Assuming
that |Ei(ρ)| = o(ρ) for i = 1, ..., 4, which will be proved in Section 5, we deduce that Equation
(11) holds with

f(ρ) = ρ and δF 1 = −
(
∫

∂ω
ηds

)

v0(0).

Thanks to the linearity of Equation (17), the expression of δF 1 can be rewritten with the help
of the coefficient

Pω =

∫

∂ω
η̂ds, (18)

where η̂ ∈ H−1/2(∂ω) is the unique solution of the integral equation
∫

∂ω
E(x− y)η̂(y)ds(y) = 1 ∀x ∈ ∂ω. (19)

Thus, under the following hypothesis needed to estimate the errors Ei(ρ) and to prove that
δF 2 = 0, the asymptotic expansion of the cost functional can be derived from Theorem 1,
constituting Theorem 2.

Hypothesis 1. (1) There exists λ > 0 and some constant c > 0 such that for any f ∈
H−1(Ωρ), ϕ ∈ H1/2(Γ) and u ∈ H1(Ωρ) with ‖u‖1,Ωρ < λ and ‖f‖−1,Ωρ, ‖ϕ‖1/2,Γ small
enough, the problem







−∆v +Ru(v) = f in Ωρ,
v = ϕ on Γ,
v = 0 on ∂ωρ,

(20)

admits one and only one solution satisfying

‖v‖1,Ωρ ≤ c(‖f‖−1,Ωρ + ‖ϕ‖1/2,Γ).

(2) There exists some constant c′ > 0 such that for all v ∈ H1(Ω) with ‖v‖1,Ω small enough,

‖Ru0
(v)‖−1,Ω ≤ c′(‖v‖0,Ω + ‖v‖2

1,Ω).

Here and in the sequel, the direct state u0 is considered as fixed. Thus c′ may depend on
u0.

(3) If u is of class C2, then Φ(u) is of class C0.
(4) When ‖v‖1,Ω tends to zero, v ∈ H1

0 (Ω), we have

< Ru0
(v) −DRu0

(0)v, v0 > = o(‖v‖0,Ω + ‖v‖2
1,Ω).

Some examples of such functions Φ are given in Section 4.4. As counter-examples, there are
the differential operators of order 2 which are not defined from H1(O) to H1(O)′ for any open
and bounded set O.

To write the classical formulation of Problem (10), we need to introduce the adjoint operator
DΦ(u0)

∗ of the differential DΦ(u0) : H1
0 (Ω) → H−1(Ω), which is defined by

< DΦ∗(u0)ψ,ϕ > = < DΦ(u0)ϕ,ψ > ∀ϕ,ψ ∈ H1
0 (Ω).
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Theorem 2 (Topological sensitivity in 3D). If

• the function Φ satisfies Hypothesis 1 and ‖u0‖1,Ω < λ,
• the cost functional satisfies Equations (13) and (14) with f(ρ) = ρ,
• the adjoint problem: find v0 ∈ H1

0 (Ω) such that

{

−∆v0 +DΦ(u0)
∗v0 = −DJ0(u0) in Ω,
v0 = 0 on Γ,

(21)

has at least one solution,
• the direct and adjoint states u0 and v0 are of class C2 in the vicinity of the origin,
• the coefficient Pω is defined by (18),

then the following asymptotic expansion holds true:

j(ρ) − j(0) = ρ [Pωu0(0)v0(0) + δJ1 + δJ2] + o(ρ). (22)

4.2. Topological sensitivity in 2D.

4.2.1. Asymptotic behavior of the solution. In dimension 2, the fundamental solution of the
Laplacian reads

E(x) =
−1

2π
ln |x|.

It does not tend to zero at infinity. Hence, an approximation of uρ−u0 by a single layer potential
is not relevant. We adopt a very different approach.

We split uρ − u0 into

uρ − u0 = hρ + rρ + sρ (23)

where the expected dominant part near the hole is

hρ(x) = −E(x)

E(ρ)
u0(0)

and rρ, sρ verify
{

−∆rρ +Ru0+hρ
(rρ) = −Ru0

(hρ) in Ω,
rρ = −hρ on Γ,







−∆sρ +Ru0+hρ+rρ
(sρ) = 0 in Ωρ,
sρ = 0 on Γ,
sρ = −u0 − hρ − rρ on ∂ωρ.

In a natural way, we have denoted for simplicity E(ρ) = − ln ρ/2π.

4.2.2. Asymptotic behavior of the cost functional. Denoting by

E1(ρ) =

∫

∂ωρ

∂nu0v0ds+

∫

ωρ

σv0dx,

E2(ρ) =

∫

∂ωρ

∂nrρv0ds,

E3(ρ) =

∫

∂ωρ

∂nsρv0ds,

E4(ρ) =

∫

∂ωρ

∂nhρ[v0 − v0(0)]ds,
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we obtain

< Fρ(uρ) − F0(uρ), v0 > =

(

∫

∂ωρ

∂nhρds

)

v0(0) +
4
∑

i=1

Ei(ρ)

= − 1

E(ρ)

(

∫

∂ωρ

∂nEds

)

u0(0)v0(0) +
4
∑

i=1

Ei(ρ)

=
u0(0)v0(0)

E(ρ)
+

4
∑

i=1

Ei(ρ).

This latter equality comes straightforwardly from the fact that E is the fundamental solution of
the Laplacian. We will prove in Section 5 that |Ei(ρ)| = o(−1/ ln ρ) for i = 1, ..., 4. Thus, we set

f(ρ) =
−1

ln ρ
and δF 1 = 2πu0(0)v0(0).

Here again we have that δF 2 = 0. We derive the topological asymptotic expansion from Theorem
1. For the proof, the following hypothesis is required.

Hypothesis 2. (1) There exists p ∈]1, 2[ and q ∈]1,+∞[ such that Φ can be extended in a
map, still denoted by Φ, which is defined from W 1,p(O) into Lq(O) for any open and
bounded subset O of R

2.
(2) There exists λ > 0 and some constant c > 0 such that for any f ∈ H−1(Ωρ), ϕ ∈

H1/2(Γ) and u ∈ W 1,p(Ωρ) with ‖u‖W 1,p(Ωρ) < λ and ‖f‖−1,Ωρ, ‖ϕ‖1/2,Γ small enough,
the problem







−∆v +Ru(v) = f in Ωρ,
v = ϕ on Γ,
v = 0 on ∂ωρ,

(24)

has one and only one solution satisfying

‖v‖1,Ωρ ≤ c(‖f‖−1,Ωρ + ‖ϕ‖1/2,Γ).

(3) There exists some constant c′ > 0 such that for any open set O ⊂ Ω and for all u, v ∈
W 1,p(O) with ‖u‖W 1,p(O) ≤ λ and ‖v‖W 1,p(O) small enough,

‖Ru(v)‖Lq(O) ≤ c′‖v‖W 1,p(O).

(4) When ‖v‖1,Ω tends to zero, v ∈ H1
0 (Ω), we have

< Ru0
(v) −DRu0

(0)v, v0 > = o(‖v‖W 1,p(Ω)).

Theorem 3 (Topological sensitivity in 2D). If

• the function Φ satisfies Hypothesis 2 and ‖u0‖W 1,p(Ω) < λ,
• the cost functional satisfies Equations (13) and (14) with f(ρ) = −1/ ln ρ,
• the adjoint problem (21) has at least one solution v0 ∈ H1

0 (Ω),
• the direct and adjoint states u0 and v0 are of class C2 in the vicinity of the origin,

then the following asymptotic expansion holds true:

j(ρ) − j(0) =
−1

ln ρ
[2πu0(0)v0(0) + δJ 1 + δJ2] + o(

−1

ln ρ
). (25)

4.3. Generalization. The results of Theorems 2 and 3 can be easily generalized to the case
where the Laplacian is replaced by an operator ∆̃ satisfying the following properties.

Hypothesis 3. For any open and bounded set O ⊂ R
N , ∆̃ is defined by

V(O) → V0(O)′

∆̃ : u 7→ div(A∇u),
where
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• V(O) is a closed subspace of H1(O)n, n ≥ 1,
• V0(O) = V(O) ∩H1

0 (O)n,
• A is a tensor of order 4 such that

AX : X ≥ cX : X, ∀X ∈ MN,n(R),

• the fundamental matrix of ∆̃ satisfies, in the sense of the uniform norm with respect to
the angular coordinate θ,

E(x) = O

(

1

|x|

)

, (|x| → ∞) in 3D,

E(x) ∼ −m2
ln |x|
2π

I, (|x| → 0) in 2D,

where m2 ∈ R
∗ and I is the identity matrix of size n.

For such a vector operator, the scalar Pω has to be replaced by the n×n matrix of the linear
map

X ∈ R
n 7→ PωX =

∫

∂ω
ηds,

the density η being the unique solution of the boundary integral equation

∫

∂ω
E(x− y)η(y)ds(y) = X ∀x ∈ ∂ω. (26)

Such a matrix is generally called a polarization matrix [21]. In the present case of a Dirichlet
contition on the border of the inclusion, it coincides with the well-known notion in harmonic
analysis of capacity matrix.

Then, under the hypotheses of Theorems 2 and 3 satisfied by replacing ∆ by ∆̃, H1(O) by
V(O) and H1

0 (O) by V0(O), we have the topological asymptotic expansions:

j(ρ) − j(0) ∼ ρ [Pωu0(0).v0(0) + δJ 1 + δJ2] in 3D, (27)

j(ρ) − j(0) ∼ −1

ln ρ

[

2π

m2
u0(0).v0(0) + δJ 1 + δJ 2

]

in 2D. (28)

If the solution uρ is complex-valued, which means that the Hilbert space V(O) is complex,
then the above results can be adapted by identifying C with R

2. This leads to the following
changes. We refer the reader e.g. to [23] for more details.

• The cost functional J0, which remains real-valued, is supposed to be “R-differentiable”
at u0, i.e. there exists L0 ∈ V0(Ω)′ such that

J0(u0 + h) − J0(u0) = ℜL0(h) + o(‖h‖).

• The adjoint problem reads: find v0 ∈ H1
0 (Ω) such that

{

−∆v0 +DΦ(u0)
∗v0 = −L0 in Ω,
v0 = 0 on Γ.

(29)

• The dot product u0(0).v0(0) in the asymptotic formulas (27) and (28) has to be under-
stood as the real part of the hermitian dot product of C

n.
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4.4. Examples. We give in Table 1 some examples of differential operators ∆̃ satisfying Hypoth-
esis 3 and of functions Φ verifying Hypothesis 1 in dimension 3 and Hypothesis 2 in dimension 2.
For the linear functions, the checking of these Hypotheses is immediate. For the Navier-Stokes
equations (incompressible case), it is quite technical and involves specific proporties of the prob-
lem. The reader is referred to [2]. The nonlinear Helmholtz equation is treated in Section 6.
The exponent s denotes an integer such that s ∈ {1, 2} in 3D, s ≥ 1 in 2D. The coefficient
ǫ can be any complex number, but we must keep in mind that the PDE (the initial one and
also the one in the presence of a small hole) must be well-posed. This can be obtained by a
fixed point argument (see e.g. [11] for a similar case) provided that the right hand side satisfies

‖σ‖0,Ω ≤ c0|ǫ|−1/2s, c0 depending on Ω and s. Thus, if |ǫ| is large, then ‖σ‖0,Ω has to be small.
We give in Table 2 the corresponding coefficient m2. In elasticity, the plane strain case is

presented. For plane stress, λ∗ = 2µλ/(λ+ 2µ) must be substituted for λ. We use the standard
notations r = |x| and er = x/|x|.

PDE system ∆̃u V(O) Φ(u)

Laplace/ (nonlinear) Helmholtz ∆u H1(O)n −k2(1 + ǫ|u|2s)u

linear elasticity/elastic waves div σ(u) H1(O)N −k2u

Stokes/quasi-Stokes, Navier-Stokes ν∆u {u ∈ H1(O)N ,div u = 0} αu, ∇u.u
Table 1. Some examples of operators.

PDE system E(x) m2

Laplace/ (nonlinear) Helmholtz
−1

2π
ln r I 1

linear elasticity/elastic waves
−(λ+ 3µ) ln rI + (λ+ µ)erer

T

4πµ(λ+ 2µ)

λ+ 3µ

2µ(λ+ 2µ)

Stokes/quasi-Stokes, Navier-Stokes
− ln rI + erer

T

4πν

1

2ν
Table 2. Fundamental solution and coefficient m2 (2D).

4.5. Spherical hole (3D). We suppose here that ω = B(0, 1) and that the fundamental solu-

tion of the operator ∆̃ is of the form

E(x) =
αI + βere

T

r

4πr
, α, β ∈ R.

A straightforward calculus leads to the equality
∫

∂ω
E(x− y)ds(y) = m3I ∀x ∈ ∂ω,

m3 = α+
β

3
.

In this case, provided that m3 6= 0, the density η solution of (26) is the constant η = m−1
3 X and

the polarization matrix is

PB(0,1) =
4π

m3
I.

Hence the topological asymptotic expansion reads

j(ρ) − j(0) ∼ ρ

[

4π

m3
u0(0).v0(0) + δJ 1 + δJ 2

]

. (30)
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Table 3 gathers the values of the coefficient m3 corresponding to the operators presented in Table
1. Here and in Table 2, in the linear cases, we retrieve in a systematic way known formulas
[5, 6, 7, 8, 12, 22, 23].

PDE system E(x) m3

Laplace/ (nonlinear) Helmholtz
1

4πr
I 1

linear elasticity/elastic waves
(λ+ 3µ)I + (λ+ µ)erer

T

8πµ(λ+ 2µ)r

2λ+ 5µ

3µ(λ+ 2µ)

Stokes/quasi-Stokes, Navier-Stokes
I + erer

T

8πνr

2

3ν
Table 3. Fundamental solution and coefficient m3 (3D).

4.6. Particular cost functionals. The proof of the following theorem is reported in Section
5.

Theorem 4. For the following cost functionals and an operator ∆̃ satisfying Hypothesis 3, under
Hypothesis 1 in 3D (resp. Hypothesis 2 in 2D), Equations (13) and (14) hold with f(ρ) = ρ
(resp. f(ρ) = −1/ ln ρ) and the corresponding values of δJ1 and δJ2.

(1) If the cost functional is of the form

Jρ(u) = J(u|Ω\B(0,R)), R > 0,

then

δJ 1 = δJ 2 = 0.

(2) For the cost functional

Jρ(u) =

∫

Ωρ

|u− ud|2dx

where ud ∈ L2(Ω)n ∩ Lp(B(0, R))n, p > N , R > 0, we have

δJ 1 = δJ 2 = 0.

(3) For the cost functional

Jρ(u) =

∫

Ωρ

|A∇(u− ud)|2dx

where ud ∈ V(Ω) ∩W 1,p(B(0, R))n, p > N , R > 0, we have

δJ 1 = 0 and δJ2 =







Pωu0(0).u0(0) in 3D,
2π

m2
u0(0).u0(0) in 2D.

5. Proofs

In this section, we denote by R some fixed radius such that B(0, R) ⊂ Ω, DR = Ω \B(0, R).
We call c any positive number that may change from place to place but that never depends on
ρ.

5.1. Proof of theorem 2 (3D).
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5.1.1. Error estimate on the solution. We recall the following lemma [6].

Lemma 1. Let wρ be the solution of






−∆wρ = 0 in R
3 \ ωρ,

wρ → 0 at ∞,
wρ = ψ on ∂ωρ,

where ψ ∈ H1/2(∂ωρ). There exists some constants c > 0 such that for all ρ sufficiently small

‖wρ‖0,Ωρ ≤ cρ‖ψ(ρx)‖1/2,∂ω ,

‖wρ‖1,DR
≤ cρ‖ψ(ρx)‖1/2,∂ω ,

|wρ|1,Ωρ ≤ cρ1/2‖ψ(ρx)‖1/2,∂ω .

(1) Estimate of hρ. Lemma 1 yields

‖hρ‖0,Ωρ ≤ cρ‖u0(ρx)‖1/2,∂ω ≤ cρ,
‖hρ‖1,DR

≤ cρ‖u0(ρx)‖1/2,∂ω ≤ cρ,

|hρ|1,Ωρ ≤ cρ1/2‖u0(ρx)‖1/2,∂ω ≤ cρ1/2.
(31)

(2) Estimate of rρ. Thanks to Hypothesis 1, it comes

‖rρ‖1,Ωρ ≤ c‖Ru0
(hρ)‖−1,Ωρ + c‖hρ‖1/2,Γ.

Let h̃ρ be the extension

h̃ρ =

{

hρ on Ωρ,
u0 on ωρ.

Due to Equation (2) and Hypothesis 1, we have

‖rρ‖1,Ωρ ≤ c‖Ru0
(h̃ρ)‖−1,Ω + c‖hρ‖1/2,Γ

≤ c‖h̃ρ‖0,Ω + c‖h̃ρ‖2
1,Ω + c‖hρ‖1/2,Γ

≤ c‖hρ‖0,Ωρ + c‖u0‖0,ωρ + c‖hρ‖2
1,Ωρ

+ c‖u0‖2
1,ωρ

+ c‖hρ‖1/2,Γ.

Then, Lemma 1 and the regularity of u0 yield

‖rρ‖1,Ωρ ≤ cρ. (32)

5.1.2. Determination of δF 1. We have to prove that |Ei(ρ)| = o(ρ) for all i = 1, ..., 4.

(1) The regularity of u0, v0 and σ in the vicinity of the origin yields directly

|E1(ρ)| ≤ cρ2.

(2) By a change of variable and thanks to the regularity of v0 near the origin, it comes

|E2(ρ)| ≤ cρ‖∂n(rρ(ρx))‖−1/2,∂ω .

By difference, rρ is locally H2 near the origin. Hence, with the notation

H̃1
0 (

1

ρ
Ωρ) =

{

u ∈ H1(
1

ρ
Ωρ), u| 1

ρ
Γ = 0

}

,

we obtain

|E2(ρ)| ≤ cρ
[

|rρ(ρx)|1, 1
ρ
Ωρ

+ ‖∆(rρ(ρx))‖H̃1

0
( 1

ρ
Ωρ)′

]

≤ cρ|rρ(ρx)|1, 1
ρ
Ωρ

+ cρ3‖(Ru0+hρ
(rρ) +Ru0

(hρ))(ρx)‖H̃1

0
( 1

ρ
Ωρ)′ .

Yet, Ru0+hρ
(rρ) +Ru0

(hρ) = Ru0
(hρ + rρ) and Equation (2) yields

‖Ru0
(hρ + rρ)(ρx)‖H̃1

0
( 1

ρ
Ωρ)′ ≤ c‖Ru0

(hρ + rρ)(ρx)‖H1

0
( 1

ρ
Ω)′ + c‖Ru0

(hρ + rρ)(ρx)‖H1(ω)′ .
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It follows from the fact that, inside ωρ, hρ + rρ = −u0 which is of class C2, together with
Hypothesis 1, that ‖Ru0

(hρ + rρ)(ρx)‖H1(ω)′ ≤ c. Then, a change of variable brings

|E2(ρ)| ≤ cρ1/2‖rρ‖1,Ωρ + cρ1/2‖Ru0
(hρ + rρ)‖H−1(Ω) + cρ3.

By Hypothesis 1, we get

|E2(ρ)| ≤ cρ1/2‖rρ‖1,Ωρ + cρ1/2(‖hρ + rρ‖0,Ω + ‖hρ + rρ‖2
1,Ω) + cρ3

≤ cρ1/2‖rρ‖1,Ωρ + cρ3

+cρ1/2(‖hρ + rρ‖0,Ωρ + ‖hρ + rρ‖2
1,Ωρ

+ ‖u0‖0,ωρ + ‖u0‖2
1,ωρ

).

Finally, the inequalities (31) and (32) and the regularity of u0 imply

|E2(ρ)| ≤ cρ3/2.

(3) We have
|E3(ρ)| ≤ cρ‖∂nSρ‖−1/2,∂ω ≤ cρ|Sρ|1,B\ω

where B denotes some ball containing ω. By means of the elliptic regularity and a Taylor
expansion of u0 at the origin, we obtain that

‖Sρ‖1,B\ω ≤ cρ, (33)

from which we derive
|E3(ρ)| ≤ cρ2.

(4) A Taylor expansion of v0 yields straightforwardly

|E4(ρ)| ≤ cρ2.

5.1.3. Determination of δF 2. By an immediate calculation, it comes

< F0(uρ) − F0(u0) −DF0(u0)(uρ − u0), v0 > = < Ru0
(uρ − u0) −DΦ(u0)(uρ − u0), v0 > .

Thanks to Hypothesis 1, and recalling that uρ is extended by zero inside ωρ, we obtain

< F0(uρ) − F0(u0) −DF0(u0)(uρ − u0), v0 >

= o
(

‖uρ − u0‖0,Ω + ‖uρ − u0‖2
1,Ω

)

= o
(

‖hρ + rρ‖0,Ωρ + ‖u0‖0,ωρ + ‖hρ + rρ‖2
1,Ωρ

+ ‖u0‖2
1,ωρ

)

.

From the inequalities (31) and (32) and the regularity of u0 in the vicinity of the origin, we
deduce that the left hand side behaves like a o(ρ) and consequently that δF 2 = 0.

5.2. Proof of theorem 3 (2D).

5.2.1. Error estimate on the solution. We recall the following lemma [6].

Lemma 2. Let wρ be the solution of






−∆wρ = 0 in Ωρ,
wρ = 0 on Γ,
wρ = ψ on ∂ωρ.

where ψ ∈ H1/2(∂ωρ). There exists c > 0 such that for all ρ small enough,

‖wρ‖1,Ωρ ≤ c√− ln ρ
‖ψ(ρx)‖1/2,∂ω .

(1) Estimate of hρ. Starting from the explicit expression of hρ, easy calculations yield

‖hρ‖W 1,p(Ω) ≤
c

− ln ρ
, ‖hρ‖1,Ωρ ≤ c√− ln ρ

,

‖hρ‖0,Ωρ ≤ c

− ln ρ
, ‖hρ‖1,DR

≤ c

− ln ρ
. (34)
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(2) Estimate of rρ. Thanks to Hypothesis 2, we obtain

‖rρ‖1,Ω ≤ c‖Ru0
(hρ)‖−1,Ω + c‖hρ‖1/2,Γ

≤ c‖Ru0
(hρ)‖Lq(Ω) + c‖hρ‖1/2,Γ

≤ c‖hρ‖W 1,p(Ω) + c‖hρ‖1/2,Γ

≤ c

− ln ρ
. (35)

Moreover, we have

∆rρ = Ru0+hρ
(rρ) +Ru0

(hρ) = Ru0
(hρ + rρ).

Thus, since hρ + rρ ∈ W 1,p(Ω), we have Ru0
(hρ + rρ) ∈ Lq(Ω). A standard interior

regularity theorem yields rρ ∈W 2,q(B(0, R)) and

‖rρ‖W 2,q(B(0,R)) ≤ c‖hρ + rρ‖W 1,p(Ω) ≤
c

− ln ρ
.

(3) Estimate of sρ. By splitting sρ into two functions and by estimating each of them with
the help of Lemma 2 and Hypothesis 2, respectively, we prove easily that

‖sρ‖1,Ωρ ≤ c√− ln ρ
‖(u0 + hρ + rρ)(ρx)‖1/2,∂ω .

On the one hand, we have on ∂ω

(u0 + hρ)(ρx) = u0(ρx) −
E(ρx)

E(ρ)
u0(0)

= u0(ρx) − u0(0) −
E(x)

E(ρ)
u0(0),

from which we derive straightforwardly

‖(u0 + hρ)(ρx)‖1/2,∂ω ≤ c

− ln ρ
. (36)

On the other hand, since W 2,q(B(0, R)) ⊂ L∞(B(0, R)), we have

‖rρ(ρx)‖1/2,∂ω ≤ c‖rρ(ρx)‖1,B\ω

≤ c

ρ
‖rρ‖0,ρB\ωρ

+ c|rρ|1,ρB\ωρ

≤ c‖rρ‖L∞(Ωρ) + c|rρ|1,Ωρ

≤ c‖rρ‖W 2,q(Ωρ)

≤ c

− ln ρ
.

Finally, we obtain

‖sρ‖1,Ωρ ≤ c

(− ln ρ)3/2
. (37)

5.2.2. Determination of δF 1.

(1) Thanks to the regularity of u0, v0 and σ near the origin, we obtain immediately that

|E1(ρ)| ≤ cρ.

(2) The Green formula provides
∫

∂ωρ

∂nrρv0ds =

∫

ωρ

(∆rρv0 + ∇rρ.∇v0)dx.
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Then, it follows from the Hölder inequality that

|E2(ρ)| ≤ c‖rρ‖W 2,1(ωρ)

≤ cρ2−2/q‖rρ‖W 2,q(ωρ)

≤ c
ρ2−2/q

− ln ρ
= o(

−1

ln ρ
).

(3) By the Green formula, we find that

|E3(ρ)| ≤ c|sρ|1,Ωρ + c‖∆sρ‖H1(Ωρ)′ .

Yet, according to Hypothesis 2, we have

‖∆sρ‖H1(Ωρ)′ = ‖Ru0+hρ+rρ
(sρ)‖H1(Ωρ)′ ≤ c‖sρ‖H1(Ωρ).

Consequently, Equation (37) yields

|E3(ρ)| ≤
c

(− ln ρ)3/2
.

(4) We obtain directly from the definition of hρ and a Taylor expansion of v0 that

|E4(ρ)| ≤
cρ

− ln ρ
.

5.2.3. Determination of δF 2. We can prove that δF 2 = 0 in a similar manner to the 3D case.

5.3. Proof of theorem 4 (particular cost functionals). For simplicity, we present the proof

for ∆̃ = ∆. We need the following estimate which is a consequence of Equations (31) and (32)
in 3D, of Equations (34), (35) and (37) in 2D.

Lemma 3. For all ρ small enough, we have

‖uρ − u0‖1,DR
= O(f(ρ)),

‖uρ − u0‖0,Ω = O(f(ρ)).

The proof of Theorem 4 is successively presented for the three examples of cost functional.

(1) The result comes straightforwardly from the differentiability of J and Lemma 3.
(2) On the one hand, we have

Jρ(uρ) − J0(uρ) = −
∫

ωρ

|ud|2dx.

From the Hölder inequality and the assumption made on the regularity of ud, we obtain
easily that

Jρ(uρ) − J0(uρ) = o(f(ρ)).

Hence δJ1 = 0. On the other hand, we have

J0(uρ) − J0(u0) = DJ0(u0)(uρ − u0) +

∫

Ω
|uρ − u0|2dx.

According to Lemma 3, this latter term is a o(f(ρ)) and consequently δJ 2 = 0.
(3) We prove that δJ 1 = 0 in the same way as in the previous case. Besides, we have

VJ(uρ − u0) := J0(uρ) − J0(u0) −DJ0(u0)(uρ − u0)

=

∫

Ω
|∇(uρ − u0)|2dx.



16 englishS. Amstutz

• Let us first consider the 3D case. With the splitting (16), we have

VJ(uρ − u0) =

∫

Ωρ

|∇(hρ + rρ)|2dx+

∫

ωρ

|∇u0|2dx.

Thanks to the boundedness of ∇u0, the latter term is a o(ρ). It follows from the
estimates (31) and (32) that

VJ(uρ − u0) =

∫

Ωρ

|∇hρ|2dx+ o(ρ).

The Green formula, a change of variable, the relation Hρ = H+Sρ and the estimate
(33) bring successively

VJ(uρ − u0) = −
∫

∂ωρ

∂nhρ.hρds+ o(ρ)

= −ρ
∫

∂ω
∂nHρ.Hρds+ o(ρ)

= −ρ
∫

∂ω
∂nH.Hds+ o(ρ).

Then, the jump relation of the single layer potential yields

VJ(uρ − u0) = −ρ
∫

∂ω
η.u0(0)ds + o(ρ),

from which we deduce the expression of δJ2.
• In 2D, we have according to the splitting (23)

VJ(uρ − u0) =

∫

Ωρ

|∇(hρ + rρ + sρ)|2dx+

∫

ωρ

|∇u0|2dx.

We derive from Equations (34), (35) and (37)

VJ(uρ − u0) =

∫

Ωρ

|∇hρ|2dx+ o(
−1

ln ρ
)

= −
∫

∂ωρ

∂nhρ.hρds+ o(
−1

ln ρ
).

Next, it comes from (36) and the regularity of u0 in the vicinity of the origin that

VJ(uρ − u0) =

(

∫

∂ωρ

∂nhρds

)

u0(0) + o(
−1

ln ρ
).

We obtain finally by replacing hρ by its expression and by using the fact that E is
the fundamental solution of the Laplacian that

VJ(uρ − u0) =
u0(0)

2

E(ρ)
+ o(

−1

ln ρ
).

This leads to the announced value of δJ2.

6. An example of application: a nonlinear Helmholtz equation

Theorem 5. We consider the function

Φ(u) = −k2(1 + ǫ|u|2s)u,

where k ∈ C, ǫ ∈ C and s ∈ {1, 2} in 3D, s ∈ N
∗ in 2D. We assume that k2 is not an eigenvalue

of the operator −∆ : H1
0 (Ω) → H−1(Ω) and that the direct and adjoint states u0 and v0 belong

to L∞(Ω). Then,
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• for all open set O ⊂ Ω, Φ defines a differentiable map from H1(O) into H1(O)′ and
Equation (2) holds,

• Hypothesis 1 in 3D and Hypothesis 2 in 2D are satisfied.

Those results remain true in the case of a vector field with an operator ∆̃ verifying Hypothesis
3.

Proof. For simplicity, we present the proof for a real scalar field (i.e. k, ǫ and σ are real), in 3D
only. The 2D case can be treated in a similar manner.

(1) The fact that Φ maps a function of H1(O) to a function of H1(O)′ and that Equation
(2) is satisfied is an immediate consequence of the Sobolev imbedding H1(O) ⊂ L6(O)
and of the Hölder inequality.

(2) Let us now study the operator Ru : v 7→ Φ(u+ v) − Φ(u). The binomial formula yields

Ru(v) = −k2[1 + ǫ(2s+ 1)u2s]v +R′
u(v),

with

R′
u(v) = −k2ǫv2

2s−1
∑

p=0

(

2s + 1
p+ 2

)

u2s−1−pvp.

For a given u ∈ H1(O), we obtain from the Sobolev imbedding theorem and the Hölder
inequality that

• the map v 7→ −k2[1 + ǫ(2s + 1)u2s]v is linear and continuous from H1(O) into
H1(O)′,

• the estimate

‖R′
u(v)‖H1(O)′ ≤ c‖v‖2

H1(O)

holds true provided that ‖v‖H1(O) is small enough.

Therefore, we conclude that Φ is differentiable from H1(O) into H1(O)′ with

DΦ(u)v = −k2[1 + ǫ(2s + 1)u2s]v.

Consider now the case where O = Ω and u = u0, the direct state. As u0 ∈ L∞(Ω), we
have on the one hand

‖DΦ(u0)v‖H1(Ω)′ ≤ c‖v‖L2(Ω),

and consequently,

‖Ru0
(v)‖H1(Ω)′ ≤ c(‖v‖L2(Ω) + ‖v‖2

H1(Ω)).

On the other hand, since furthermore v0 ∈ L∞(Ω), we have for all v ∈ H1(Ω)

| < Ru0
(v) −DRu0

(0)v, v0 > | = | < R′
u0

(v), v0 > |
≤ c‖R′

u0
(v)‖L1(Ω)

≤ c

∥

∥

∥

∥

∥

∥

v2 +

2s−1
∑

p=1

(

2s+ 1
p+ 2

)

u2s−1−p
0 vp+2

∥

∥

∥

∥

∥

∥

L1(Ω)

.

For ‖v‖H1(Ω) small enough, the Sobolev imbedding theorem and the Hölder inequality
yield

| < Ru0
(v) −DRu0

(0)v, v0 > | ≤ c(‖v‖2
L2(Ω) + ‖v‖3

H1(Ω))

≤ c‖v‖H1(Ω)(‖v‖L2(Ω) + ‖v‖2
H1(Ω)).
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(3) We will now sketch the checking of the first condition of Hypothesis 1, which uses very

standard arguments. For a given ϕ ∈ H1/2(Γ) and any ψ ∈ H−1(Ωρ), we denote by
Sϕ

ρ (ψ) the solution of the PDE






−∆y − k2y = ψ in Ωρ,
y = ϕ on Γ,
y = 0 on ∂ωρ.

By elliptic regularity, we have

‖Sϕ
ρ (ψ)‖1,Ωρ ≤ c(‖ψ‖−1,Ωρ + ‖ϕ‖1/2,Γ). (38)

Moreover, provided that ρ is small enough, this constant c can be taken independent of
ρ (see e.g. [1]). Therefore, Problem (20) can be rewritten

T f,ϕ
ρ (v) = v, (39)

where
T f,ϕ

ρ (v) = Sϕ
ρ

(

k2ǫ(2s + 1)u2sv −R′
u(v) + f

)

.

Using (38) and a few technical estimates coming basically from the Hölder inequality, it
is easy to show that, when ‖f‖−1,Ωρ , ‖ϕ‖1/2,Γ and ‖u‖1,Ωρ are sufficiently small, there

exists β > 0 such that the ball BH1(Ωρ)(0, β) is stable by the map T f,ϕ
ρ and such that

T f,ϕ
ρ is a 1/2-contraction on BH1(Ωρ)(0, β). Hence, by the Banach fixed point theorem,

Equation (39) admits one and only one solution. Finally, to obtain the elliptic regularity
of the solution v, we write that

‖T f,ϕ
ρ (v) − T f,ϕ

ρ (0)‖1,Ωρ ≤ 1

2
‖v − 0‖1,Ωρ ,

because T f,ϕ
ρ is a 1/2-contraction. This implies, since v is a fixed point, that

‖v − Sϕ
ρ (f)‖1,Ωρ ≤ 1

2
‖v‖1,Ωρ .

Thus, using also (38), it comes

‖v‖1,Ωρ ≤ 2‖Sϕ
ρ (f)‖1,Ωρ ≤ c(‖f‖−1,Ωρ + ‖ϕ‖1/2,Γ).

This completes the proof of Theorem 5.

�
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Curie (France), 1976.

[16] S.A. Nazarov, The asymptotic behavior with respect to a small parameter of the solution of an elliptic

boundary value problem in a domain with a conical point, Dokl. Akad. Nauk SSSR, 238(4):827-830, 1978.
(English transl.: Sov. Phys. Dokl. 23, pp. 119-120, 1978).

[17] S.A. Nazarov and J. Sokolowski, Asymptotic analysis of shape functionals, J. Math. Pures Appl. 82,
pp. 125-196, 2003.

[18] S.A. Nazarov and J. Sokolowski, Self adjoint extensions of differential operators in application to
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