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Abstract

An algorithm for topology optimization of elastic structures under plane
stress subject to the Drucker-Prager stress constraint is presented. The algo-
rithm is based on the use of the topological derivative of the associated ob-
jective functional in conjunction with a level-set representation of the struc-
ture domain. In this context, a penalty functional is proposed to enforce the
point-wise stress constraint and a closed formula for its topological derivative
is derived. The resulting algorithm is of remarkably simple computational
implementation. It does not require post-processing procedures of any kind
and features only a minimal number of user-defined algorithmic parameters.
This is in sharp contrast with current procedures for topological structural
optimization with local stress constraints. The effectiveness and efficiency of
the algorithm presented here are demonstrated by means of numerical exam-
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ples. The examples show, in particular, that it can easily handle structural
optimization problems with underlying materials featuring strong asymmetry
in their tensile and compressive yield strengths.
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topological sensitivity, topological derivative, topology optimization,
Drucker-Prager criterion, local stress constraint

1. Introduction

Over the last two decades or so, the development of algorithms for topol-
ogy optimization of linear elastic load-bearing structures has attracted con-
siderable attention in computational mechanics circles. As a result of the
continuous research efforts in this direction a wide body of literature is cur-
rently available on this topic and various computational procedures are well
established and can be applied to a range of practical problems of industrial
interest [16, 1, 10]. Many such procedures, almost invariably used in con-
junction with finite element methods of structural analysis, are even available
in off-the-shelf commercial software packages (e.g. AltairR© OptiStructR© [28]
and GenesisR© [19]).

To date, most developments in this field have relied on so-called SIMP
methods (solid isotropic material with penalization), where the physical black-
and-white topology of the optimal structure, i.e. a topology consisting of
either material (black) or empty space (white) at each point of the com-
putational domain, is approximated by means of a fictitious density field
displaying a smooth (grey) transition in the otherwise black-white interface
(the boundary of the structure domain). Such methods have been widely
applied with success to problems such as compliance minimization [10] but,
despite its fundamental importance in engineering design, only a relatively
small number of publications appear to deal with the incorporation of local
(point-wise) stress constraints [2, 3, 11, 14, 18, 22, 29]. This can be probably
justified by the challenges resulting from the typically very large number of
highly non-linear constraints involved as well as by the need for carefully
designed stress relaxation procedures to address a side effect of the density
field-based regularization of the original black-and-white problem [22].

More recently, a new class of methodologies for structural topology op-
timization has emerged based on the use of the topological derivative of the
relevant objective functionals [31, 12, 26, 5, 25, 27]. The notion of topologi-
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cal derivative itself is a relatively new concept, introduced just over a decade
ago [12, 31]. Further theoretical developments are reported, among others, in
[24, 4, 30]. An early application of this idea to topology compliance optimiza-
tion, prior to its precise mathematical definition in a general context, is de-
scribed in [17]. The topological derivative concept extends the conventional
notion of derivative to functionals whose variable is a geometrical domain
subject to singular topology changes. In structural topology optimization for
instance, it gives the exact sensitivity of the associated objective function-
als to black-and-white-type topological perturbations such as the insertion
of infinitesinal holes or inclusions of different material properties. Crucial
here is the fact that the topological derivative of the objective functional
contains fundamental information that accurately indicates descent direc-
tions associated with exact black-and-white-type topology changes, without
the need for black-grey-white-type regularisation procedures. In this con-
text, a topological derivative-based algorithm with a level-set representation
of the structure domain has been proposed in [5] and shown to efficiently
solve compliance minimization problems. More recently, following the ideas
presented in [6] for the Laplace equation, this algorithm has been further de-
veloped in [8] to incorporate local stress constraints of the von Mises type by
means of a penalty approach in plane stress problems. One striking feature
of the algorithm of [8] is its simplicity of implementation. Once a suitable
penalized objective functional has been defined and a closed formula for its
topological derivative obtained, the locally stress-constrained topology opti-
mization problem is treated algorithmically in exactly the same way as its
unconstrained counterpart. In particular, in contrast to current methods
of stress-constrained topology optimization, the topological derivative-based
procedure does not require post-processing (e.g. procedures such as density
filtering, ε-relaxation [22]) of any kind and only a minimal number of user-
defined algorithmic parameters (e.g. penalty coefficient) are needed. This
relative algorithmic simplicity is nothing but a natural consequence of the
use of the topological derivative in defining the descent direction, which is
based on the exact black-and-white definition of the topology optimization
problem. In fairness to other methods of topology optimization, however, we
should note that the striking algorithmic simplicity here comes at the cost of
derivation of a closed formula for the topological derivative of the objective
functional which may prove to be a laborious mathematical task.

Our main purpose in this paper is to extend the work reported in [8] to
incorporate point-wise stress constraints of the Drucker-Prager type [15]. In
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particular, we want to minimize the volume of the structure domain requir-
ing at the same time the stress tensor at each point of the loaded optimized
structure to be bound by a Drucker-Prager-type yield criterion. In this con-
text, a suitable penalty functional for the enforcement of the Drucker-Prager
constraint is proposed and a closed formula for its topological derivative is
obtained. We recall that the Drucker-Prager yield criterion was originally
conceived as a smooth approximation to the classical Mohr-Coulomb crite-
rion for soils and geomaterials (refer for instance to [13]). Under plane stress
(the case considered here) it may be used as a general model for materi-
als with distinct tensile and compressive yield strengths, such as concrete,
masonry and wood. The overall optimization algorithm is described in de-
tail and numerical examples are presented to demonstrate its effectiveness
and efficiency in the treatment of structural optimization under the present
stress constraints. In particular, unlike stress-unconstrained optimization,
the results here show that the obtained optimized structures are free from
geometrical singularities that result in (highly undesirable) stress concentra-
tion.

The paper is organized as follows. Section 2 states the stress-constrained
topology optimization problem and defines the penalized version to be solved
by the algorithm. Section 3 presents a closed formula for the topological
derivative of the corresponding penalized objective functional. The opti-
mization algorithm is described in Section 4 and its application in numerical
examples is presented in Section 5. Concluding remarks are drawn in Section
6. The closed formula presented in Section 3 for the topological derivative
of the proposed Drucker-Prager penalty functional is derived in detail in
Appendix A.

2. The topology optimization problem

Our purpose here is to find optimal topologies for two-dimensional elastic
structures under plane stress condition loaded by a given system of mechan-
ical loads with prescribed kinematical boundary conditions and subject to
a point-wise constraint on the stress tensor. More specifically, we want to
minimize the volume of the structure domain requiring at the same time the
stress tensor at each point of the loaded optimized structure to be bound
by a Drucker-Prager-type yield criterion. The corresponding optimization
problem is mathematically stated in the following.
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2.1. The constrained optimization problem

Let D ⊂ ℜ2 be a bounded domain with Lipschitz boundary Γ defining
the so-called hold-all domain (refer to Fig. 1). The domain of the sought
optimal structure will be a subset of the hold-all domain. The boundary Γ is
the union of three given non-overlapping subsets, ΓD, ΓN and Γ0. Displace-
ments are prescribed on ΓD and non-zero and zero boundary tractions are
prescribed respectively on ΓN and Γ0. In addition, we conveniently assume
that the stress constraint is to be enforced on a given open subset D̃ of D.
Note that stress constraints cannot usually be enforced, for instance, in the
surroundings of point supports or point loads and, hence, D̃ 6= D in general.

Given a hold-all domainD and a stress constraint-enforcement subdomain
D̃, the optimisation problem consists in finding a subdomain Ω ⊂ D (the
optimal structure domain) that solves the following constrained minimization
problem:

Minimize
Ω⊂D

IΩ(uΩ), (1)

with IΩ the objective functional

IΩ(uΩ) := |Ω|+ βKΩ(uΩ); KΩ(uΩ) :=

∫

ΓN

g · uΩ ds, (2)

subject to the elastic equilibrium equations,





divΣ(uΩ) = 0 in D

uΩ = 0 on ΓD

Σ(uΩ)n = g on ΓN

Σ(uΩ)n = 0 on Γ0,

(3)

and a point-wise Drucker-Prager constraint on the stress tensor Σ:

ΣM (uΩ) + η trΣ(uΩ) ≤ σ⋆ a.e. in Ω ∩ D̃, (4)

with ΣM the von Mises effective stress:

ΣM :=
√

3
2
Σd ·Σd, (5)

and Σd the stress deviator. The given scalar constants η and σ⋆ in (4) are the
Drucker-Prager yield criterion parameters [15, 13] associated, respectively,
with the Drucker-Prager cone angle and cohesion intersect. In (2,3), g is the
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prescribed boundary traction field on the given portion ΓN of the boundary
and is assumed to belong to L2(ΓN)

2, n in (3) is the outward unit normal
vector field on Γ and uΩ is the displacement field that solves the elastic
equilibrium equations. The objective functional defined in (2) is well-suited
for the minimization of the volume |Ω| of the structure subject to a point-
wise stress constraint and has been used in [8] in conjunction with a von
Mises stress constraint. The parameter β > 0 multiplying the compliance
integral on the right hand side of (2) regularises the stress-constrained volume
minimization problem which is otherwise ill-posed.

The subscript Ω is used here to emphasise that the relevant quantities
(e.g. IΩ, uΩ) depend on the domain Ω – the design variable of problem
(1). Throughout the paper, we assume (3) to hold in the weak sense and its
solution,

uΩ ∈ V = {u ∈ H1(D)2,u|ΓD
= 0}, (6)

to be unique. The space V is the corresponding space of kinematicaly admis-
sible displacement fields. The notation Σ(uΩ) is used to emphasize that the
stress tensor is a functional of the displacement field uΩ through the linear
elastic constitutive equation:

Σ(u) = C e(u), (7)

where e is the infinitesimal strain tensor,

e(u) = 1
2
(∇u+∇uT ), (8)

and
C = 2µΩI+ λΩ(I ⊗ I), (9)

with µΩ and λΩ denoting the Lamé coefficients and I and I the fourth- and
second-order identity tensors respectively. The statement of the minimization
problem is completed with the definition of a piece-wise constant Young’s
modulus field over D as follows:

EΩ =

{
Ehard in Ω

Esoft in D \ Ω,
(10)

with
Esoft ≪ Ehard. (11)

That is, the original optimization problem, where the structure itself consists
of the domain Ω of given elastic properties and the remaining part D \ Ω
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of the hold-all is empty (has no material), is approximated by means of
the two-phase material distribution (10) over D where the empty region
D \ Ω is occupied by a material (the soft phase) with Young’s modulus,
Esoft, much lower than the given Young’s modulus Ehard of the structure
material (the hard phase). Both phases share the same Poisson’s ratio ν.
The corresponding Lamé coefficients under plane stress read

µΩ =
EΩ

2(1 + ν)
, and λΩ =

νEΩ

1− ν2
. (12)

Figure 1: Sketch of the hold-all domain.

2.2. The penalized optimization problem

The presence of the point-wise stress constraint (4) makes it difficult
to treat the above constrained optimization problem directly. This issue
has been recently discussed in some detail by Le et al. [22] in the context
of SIMP methods for structural optimization [10]. To tackle the problem
here we follow a radically different approach proposed in [8]. It relies on a
topological derivative-based algorithm in conjunction with an approximation
of the original constrained problem by means of a penalty regularization of
the point-wise stress constraint. The penalized problem is obtained in the
following.
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Before defining the corresponding penalty functional it is convenient in
the present case to re-phrase the stress constraint (4) in terms of normalized
quantities. To this end we define the normalized stress tensor :

σ := Σ/EΩ, (13)

and the normalized cohesion intersect-related parameter of the Drucker-Prager
yield surface:

σ := σ⋆/EΩ. (14)

By rewriting (4) as
ΣM(uΩ) ≤ σ⋆ − η trΣ(uΩ), (15)

squaring both sides and making use of the above definitions, we obtain after a
straightforward manipulation an equivalent statement of the Drucker-Prager
stress constraint in terms of normalized stresses:

Υ(σ(u)) := 1
2
B̃σ(u) · σ(u) + 2ησ trσ(u) ≤ σ2, (16)

where
B̃ = 3I− (1 + 2η2)I ⊗ I. (17)

Alternatively, by taking the elastic law (7,9) into account, (16) can be ex-
pressed as

1
2
Bσ(u) · e(u) + ξ tre(u) ≤ σ2, (18)

where
B = 6µI+ λ(1− 4η2)(I ⊗ I)− 2µ(1 + 2η2)(I ⊗ I) (19)

with µ and λ the normalized Lamé coefficients:

µ :=
µΩ

EΩ
; λ :=

λΩ
EΩ

(20)

and
ξ := 4(µ+ λ)ησ. (21)

With the above at hand, we now proceed to define the penalized objective
function. Then, let Φ : ℜ+ → ℜ+ be a nondecreasing function of class C2.
To allow a proper justification in the analysis presented in the appendix, we
further assume that the derivatives Φ′ and Φ′′ are bounded. The penalty
functional is defined as

JΩ(u) :=

∫

D̃

EΩΦ(Υ(σ(u)))dx. (22)
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According to (4), in the original optimization problem the stress is con-
strained in Ω ∩ D̃ – the portion of the elastic structure subject to the stress
constraint. In the penalized version (22) – where a soft phase has been in-
troduced to mimic the void region – the constraint must be imposed over
the entire D̃. With the above penalty function, we define a corresponding
penalized objective functional as

IαΩ(u) := IΩ(u) + αJΩ(u), (23)

where the scalar α > 0 is a given penalty coefficient . The original con-
strained optimization problem (1)-(4) with point-wise constraints can then
be approximated by the following penalized optimization problem:

Minimize
Ω⊂D

IαΩ(uΩ) subject to (3). (24)

Problem (24) provides a good approximation to (1)-(4) so long as

(a) the penalty coefficient α is sufficiently large; and

(b) a function Φ is chosen such that Φ′ varies sufficiently sharply around
Υ(σ(u)) = σ2.

In particular, in the present paper we shall adopt a function Φ of the following
functional format:

Φ(t) ≡ Φp(t), (25)

where p ≥ 1 is a given real parameter and Φp : ℜ+ → ℜ+ is defined as

Φp(t) =
[
1 +

(
t
σ2

)p]1/p
− 1. (26)

With this choice, the penalized problem (24) to be solved here reads explicitly

Minimize
Ω⊂D

IαΩ(uΩ) = |Ω|+β

∫

ΓN

g·uΩ ds+α

∫

D̃

EΩ Φp(Υ(σ(uΩ))) dx subject to(3).

(27)

Remark 1. Figure 2 shows the graph of function Φp for different values
of p. Note that increasing values of p make Φp vary more sharply around
Φp(Υ(σ(u))) = 1, i.e. around Υ(σ(u)) = σ2 (the Drucker-Prager cone
in stress space) so that the requirement of item (b) above is met by this
choice of Φp if p is sufficiently large. For increasing values of p and α,
the penalizing term of (27) tends to a non-differentiable penalty functional,
whose value is zero if the stress tensor is bound by the Drucker-Prager cone
almost everywhere in D̃ and ∞ otherwise.
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Figure 2: Function Φp with σ = 1 for p = 2n, n = 0, ..., 6.

3. Topological derivatives

The unconstrained minimization problem (27) will be solved in this paper
by the algorithm described in Section 4, which relies fundamentally on the
concept of topological derivative. This section provides a closed formula for
the topological derivative of the penalized objective functional of (27) to be
used in the algorithm. Before presenting the closed formula itself, a brief
discussion on the relatively recent concept of topological derivative appears
to be convenient and should be helpful to those not yet familiar with the
idea.

3.1. The topological derivative concept

The notion of topological derivative extends the conventional definition
of derivative to functionals whose variable is a geometrical domain subjected
to singular topology changes. The idea can be introduced by considering a
generic functional G(Ω) of a given domain Ω and assuming that Ω is subject
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to topology changes consisting, say, of the introduction of a circular hole of
radius ε centered at an arbitrary point x̂ ∈ Ω. The resulting topologically
changed domain, denoted Ωε(x̂), is the set defined as (refer to Fig. 3)

Figure 3: An example of topological domain perturbation.

Ωε(x̂) = Ω \Bε(x̂), (28)

where Bε(x̂) denotes the closure of the domain of the inserted hole. The
topological derivative of the functional G exists if its value G(Ωε) for the
topologically perturbed domain Ωε can be expressed as a sum

G(Ωε(x̂)) = G(Ω) + f(ε)DTG(x̂) + o(f(ε)), (29)

of the functionalG(Ω) evaluated for the original domain Ω, a term f(ε)DTG(x̂)
that varies linearly with a function f(ε) and a remainder of the form o(f(ε)).
The function f : ℜ+ → ℜ+ must be such that f(ε) → 0 when ε → 0+ and
the remainder o(f(ε)) vanishes faster than f(ε), with respect to ε, namely:

lim
ε→0

o(f(ε))

f(ε)
= 0. (30)

The right hand side of (29) is named the topological asymptotic expansion of
G and the field DTG : Ω → ℜ is the topological derivative of the functional
G evaluated at the original domain Ω for the considered type of topological
perturbation (the introduction of a circular hole). The topological derivative
DTG itself can be expressed as

DTG = lim
ε→0+

G(Ωε)−G(Ω)

f(ε)
. (31)
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The analogy between (29,31) and the corresponding expressions for a con-
ventional derivative should be noted.

To illustrate the application of this concept, let us consider the (very
simple) functional

G(Ω) := |Ω| =

∫

Ω

dx, (32)

with Ω subject to the class of topological perturbations referred to in the
above (circular holes). For two-dimensional domains Ω, the functional G(Ω)
represents the area of the domain. The expansion (29) in this case can be
obtained trivially as

G(Ωε) = |Ωε| =

∫

Ω

dx−

∫

Bε

dx

= G(Ω)− πε2, (33)

and the topological derivative DTG and function f promptly identified as

DTG = −π; f(ε) = ε2. (34)

In this particular case, DTG is independent of x̂ and the rightmost term of
the topological asymptotic expansion (29) is identically zero.

3.2. The topological derivative of the penalized objective functional

In the minimization problem (27) the hold-all domain is split as the union
of a subset Ω occupied by the hard phase and its complement D \Ω occupied
by the soft phase. In this case, it is appropriate to consider topological
perturbations consisting of the introduction a circular inclusion of domain
Bε(x̂) made of hard phase material if the perturbation point x̂ lies in the
soft phase domain and made of soft phase material if x̂ lies in the hard phase
domain. The corresponding perturbed structural domain Ωε(x̂), i.e. the
domain of the hard phase after the introduction of the inclusion, reads

Ωε(x̂) =

{
Ω \Bε(x̂) if x̂ ∈ Ω,

(Ω ∪Bε(x̂)) ∩D if x̂ ∈ D \ Ω.
(35)

The topological derivative of the unconstrained objective functional (27)
is given by the sum

DT I
α
Ω = DT |Ω|+ β DTKΩ + αDTJΩ, (36)
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of topological derivatives of each term on the right hand side of (27) with
respect to the class of topological perturbations defined by (35). The first
term DT |Ω| above is trivial. Its derivation is completely analogous to that
of the topological derivative (34)1 of the same functional, |Ω|, for topological
perturbations in the form of introduction of circular holes. Here we have

DT |Ω| =

{
−π in Ω,

π in D \ Ω.
(37)

The topological derivative DTKΩ of the compliance functional is known.
It has been used in the context of structural optimization with topologi-
cal derivative-based algorithms (refer, for instance, to [4, 20] for a detailed
derivation). Its closed formula is

DTKΩ = π(E1 −E0)(ρT− I)σ(uΩ) · e(uΩ), (38)

where

E0(x̂) =

{
Ehard if x̂ ∈ Ω

Esoft if x̂ ∈ D \ Ω;
E1(x̂) =

{
Esoft if x̂ ∈ Ω

Ehard if x̂ ∈ D \ Ω,

(39)
the scalar ρ is

ρ =
E1 − E0

bE1 + E0
, (40)

the fourth-order tensor T is the polarization tensor given by

T = b I+
a− b

2(1 + γa)
I ⊗ I, (41)

with γ the elastic modulus contrast

γ =
E1

E0
, (42)

and the constants a and b given by

a =
1 + ν

1− ν
; b =

3− ν

1 + ν
. (43)

The derivation of the topological derivative DTJΩ of the penalty functional
(22) for the Drucker-Prager stress constraint is rather involved. For the sake
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of clarity we limit ourselves to presenting only the final formula here and
leave its detailed derivation confined to Appendix A. The closed formula for
DTJΩ reads

DTJΩ = −π(E1−E0){ρk1(uΩ)T[Bσ(uΩ)+ξI]·e(uΩ)+(ρT−I)σ(uΩ)·e(vΩ)}+

πE1χD̃{Φ(ζ1(uΩ)) + ρk1(uΩ) [B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))]}+

E0χD̃{Ψρ(σ(uΩ)) +
1
4
πρ2k1(uΩ)ζ2(uΩ)} − πχD̃E0Φ(Υ(σ(uΩ))), (44)

where
k1(uΩ) = χD̃ Φ′(Υ(σ(uΩ))), (45)

with χD̃ the characteristic function of D̃:

χD̃(x) =

{
1 if x ∈ D̃
0 otherwise.

(46)

The functions ζ1, ζ2 and Ψρ are given by

ζ1(uΩ) = Υ(σ(uΩ))− ρ[B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))]+

ρ2 1
2
B̃Tσ(uΩ) · Tσ(uΩ), (47)

ζ2(uΩ) = (5− 8η2)[2σ(uΩ) · σ(uΩ)− tr2σ(uΩ)] + 3
(

1+bγ
1+aγ

)2
tr2σ(uΩ), (48)

and

Ψρ(σ(uΩ)) =

∫ 1

0

∫ π

0

1

t2
[Φ(Υ(σ(uΩ)) + ∆(t, θ))−

Φ(Υ(σ(uΩ)))− Φ′(Υ(σ(uΩ)))∆(t, θ)] dθ dt, (49)

with

∆(t, θ) := ρ t
2

{
(σI − σII)

[
(σI + σII)

(
2(1− 4η2) + 3 1+bγ

1+aγ

)
+ 8ησ

]
cos θ+

3(σI − σII)
2(2− 3t) cos 2θ

}
+

(
ρ t
2

)2
{
3(σI + σII)

2
(

1+bγ
1+aγ

)2
+ (σI − σII)

2 (3(2− 3t)2 + 4(1− 4η2) cos2 θ)+

6 1+bγ
1+aγ

(σ2
I − σ

2
II)(2− 3t) cos θ

}
, (50)
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where σI and σII are the eigenvalues of σ(uΩ). The vector field vΩ in (44) is
the solution of the adjoint equation





−div Σ(vΩ) = +div[EΩk1(uΩ)(Bσ(uΩ) + ξI)] in D,

vΩ = 0 on ΓD,

Σ(vΩ)n = −EΩk1(uΩ)[Bσ(uΩ) + ξI]n on ΓN ∪ Γ0.

(51)

Formula (44) is valid for all x̂ ∈ D \ ∂D̃ \ ∂Ω.

4. The topology design/optimization algorithm

The numerical solution of the penalized minimization problem (27) is un-
dertaken here by the algorithm proposed in [5] in conjunction with a finite
element approximation of the elastic boundary value problem (3) and the
adjoint equation (51). The algorithm relies essentially on an optimality cri-
terion based on the topological derivative of the objective function and on a
level-set representation of the structure domain. It was proven very successful
in the context of unconstrained structural optimization and optimization in
problems of flow through porous media [5], in structural optimization under
a von Mises stress constraint [8] and in the topology optimization of elastic
microstructures [7].

With the level-set representation, the current structure domain Ω is char-
acterized by a level-set function ψ ∈ L2(D) as

Ω = {x ∈ D : ψ(x) < 0}, (52)

and its complement as

D \ Ω = {x ∈ D : ψ(x) > 0}. (53)

4.1. Topological derivative-based local optimality condition

The establishment of a local optimality condition based on the topological
derivative field is straightforward. Indeed, note that for any given structure
domain Ω, a negative (positive) value of the topological derivative DT I

α
Ω(x)

at an arbitrary point x ∈ D indicates that the introduction of an infinites-
imal circular inclusion centered at that point produces a perturbed domain
whose objective functional value is smaller (greater) than that of the original
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domain. From this observation we have that a sufficient condition of local
optimality under the considered class of topological perturbations is that

DT I
α
Ω(x) > 0 ∀x ∈ D. (54)

That is, (54) implies in the present context that the introduction of an in-
finitesimal circular inclusion at any point of D can only cause an increase
in the value of the objective functional and, hence, Ω is indeed a locally
optimum structure domain.

The algorithm described below is based on an alternative sufficient con-
dition of local optimality, particularly convenient for use in conjunction with
the level-set representation of the structure domain. The alternative condi-
tion can be established by first defining the scalar function,

g(x) :=

{
−DT I

α
Ω(x) if ψ(x) < 0

DT I
α
Ω(x) if ψ(x) > 0,

(55)

and then observing that, exclusively in terms of the function g and the level-
set ψ, condition (54) is equivalent to

{
g(x) < 0 if ψ(x) < 0

g(x) > 0 if ψ(x) > 0.
(56)

Now, we note that (56) holds if the function g is a strictly positive scalar
multiple of ψ, i.e.

∃ τ > 0 s.t. g = τ ψ, (57)

or, equivalently,

θ := arccos

[
〈g, ψ〉

‖g‖L2(D) ‖ψ‖L2(D)

]
= 0, (58)

where θ is the angle between the functions g and ψ in L2(D). Hence, (57) or
(58) are also sufficient conditions of local optimality. In particular, (58) will
be used in the algorithm described below.

4.2. The algorithm

The algorithm itself aims to generate a sequence {ψi} of level-set functions
(a sequence of structural domains {Ωi}) that will produce for some iteration
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n a domain Ωn such that (58) is satisfied to within a given small numerical
tolerance ǫθ > 0:

θn := arccos

[
〈gn, ψn〉

‖gn‖L2(D) ‖ψn‖L2(D)

]
≤ ǫθ. (59)

The iterative procedure starts with the choice of an initial guess for the
optimal structure domain, i.e. with the choice of a starting level-set function
ψ0 ∈ L

2(D). For simplicity, the function ψ0 is chosen as a unit vector of
L2(D). With S denoting the set of unit vectors of L2(D), the algorithm is
explicitly given by

ψ0 ∈ S,

ψi =
1

sin θi−1

[
sin((1− κi)θi−1)ψi−1 + sin(κiθi−1)

gi−1

‖gi−1‖L2(D)

]
,

(60)

where i denotes a generic iteration number and κi ∈ [0, 1] is a step size
determined by a line-search performed at each iteration in order to decrease
the value of the objective functional IαΩi

. Note that the right hand side of (60)2
is a convex combination between ψi−1 and gi−1 up to a positive multiplicative
constant and that, by construction of the iteration formula, we have

ψi ∈ S. (61)

The iterative process is stopped when for some iteration i the optimality
condition (59) is satisfied to the desired degree of accuracy, i.e. if

θi ≤ ǫθ. (62)

If at some iteration i, the line-search step size κi is found to be smaller than
a given numerical tolerance ǫκ > 0:

κi < ǫκ, (63)

i.e. if the topology is effectively no longer changing, and at the same time the
optimality condition (62) is not met, then a uniform mesh refinement of the
hold-all domainD is carried out and the iterative procedure is continued. The
purpose of this coarse-to-fine procedure is twofold: on one hand it reduces the
computer cost and, on the other hand, it makes the algorithm less prone to
fall into (undesirable) local minima of high cost functional values. Of course,

17



as the continuum topology optimization problem has no global minimum
in general, the mesh-dependency of the obtained optimized domain cannot
be completely avoided. Note that a uniform mesh refinement will enrich
the discretized space of level-set functions and will in general improve the
accuracy of the elastic solutions. At this point we should add that more
sophisticated approaches could be adopted, for example, by generating at
each iteration a finite element mesh having element edges matching exactly
the phase interface defined by the corresponding level-set function. Also,
mesh density could be defined according to a suitable error estimator, leading
to potential savings in computing time and ensuring the error is bounded to
a desired level in the attained optimal structure domain. We emphasize,
however, that our main purpose here is to demonstrate the robustness of the
topological derivative-based iteration (60). Hence, we choose to rely on a
simpler approach to avoid any potential lack of robustness being masked by
procedures of a more peripheral nature.

In the computation of DT I
α
Ω according to expression (36) the stresses and

the topological derivatives are first computed within the finite elements (at
Gauss points) and then extrapolated to nodes. The final discretized version
of the field DT I

α
Ω used in the iterations is generated by the finite element

shape functions with smoothed nodal values obtained in a standard fashion.
The level-set functions ψ and the discretized field DT I

α
Ω are generated by the

same shape functions used in the finite element approximation of the direct
and adjoint boundary value problems (3) and (51). The material properties
Ehard or Esoft are assigned to nodes of the mesh depending on whether they
are at points with ψ < 0 (hard phase) or ψ > 0 (soft phase). In this
way, elements crossed by the hard-soft phase interface (defined by ψ = 0)
will have Young’s moduli between the values Ehard and Esoft, obtained by a
standard interpolation of the nodal Young’s moduli using the element shape
functions. Obviously, according to the above procedure, the resolution of the
optimal structure domain depends directly on the fineness of the adopted
mesh. The overall optimization algorithm is conveniently summarized in
Box 1 in pseudo-code format.

Remark 2. The present procedure is not a member of the family usually
referred to as level-set methods used, for instance, in [3]. The evolution
of the level-set function in the so-called level-set method is governed by a
Hamilton-Jacobi equation. Here the updated level-set function ψi at iteration
i is obtained according to (60) and depends solely on the known level-set ψi−1,
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the value κi, that produces a decrease in the value of the objective functional
IαΩi

, and the corresponding function gi−1, which is constructed from the topo-
logical derivative field DT I

α
Ωi−1

for the known topology of iteration i− 1. The
computation of these quantities is straightforward and their computational
implementation is simple.

Remark 3. The only algorithmic parameters in addition to the tolerances
ǫθ and ǫκ required by the present optimization algorithm are the penalty co-
efficient α, the penalty function parameter p and the compliance functional
weighting factor β. The parameters α and p are chosen as large as possible
and this choice is limited solely by numerical instabilities that result from
excessively large values. Note, in particular, that no artificial parameters or
post-processing strategies are required throughout the iterations. This is in
contrast with existing SIMP-based structural optimization strategies and fol-
lows as a natural consequence of the use of the concept of topological deriva-
tive.

Remark 4. The solution of the adjoint equation (51) within the algorithm
requires very little computational effort. Once the finite element solution for
the elastic equilibrium problem (3) has been computed, the solution of (51)
is obtained by only re-executing the back-substitution phase of the finite ele-
ment procedure with the forcing term associated with the adjoint equation. All
other calculations needed in the computation of the topological derivative, in-
cluding the evaluation of (49) by means of a Gaussian quadrature, comprise
only straightforward function evaluations. In practice, to avoid the repetitive
calculation of Ψρ according to (49) throughout the iterations, the function
Ψρ(σ) is tabulated once and for all for a wide range of σ (range of principal
values σI , σII) covering the normalized stress states usually encountered in
the solution of the present class of problems. Throughout the optimization
iterations, the required values of Ψρ(σ) are retrieved by interpolation of the
tabulated values. The dominant computational cost at each iteration (60)2 of
the optimization algorithm is the solution of the elastic finite element equi-
librium equations as many times as line-search iterations required to find the
appropriate step size κi. Only a very small number of line-search iterations
is commonly required.
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Box 1: Topological derivative-based algorithm for structural optimization with stress constraints.

(i) Initialize mesh counter, j ← 1; Generate a mesh of a chosen char-
acteristic element size hj for the hold-all domain D.

(ii) Initialize iteration counter, i ← 0; Choose an initial level-set func-
tion ψ0 ∈ S defining the initial guess Ω0 ⊂ D for the optimal struc-
ture domain.

(iii) Obtain the discretized fields uΩi
and vΩi

by solving, respectively, the
elastic equilibrium problem (3) and the adjoint equation (51) for the
current Ωi with the current mesh hj . Compute the corresponding
value of IαΩi

according to (2).

(iv) Compute the topological derivative field DT I
α
Ωi

using expressions
(36–50) and performing a standard nodal averaging procedure.

(v) Obtain the function gi according to (55) using the nodal values of
DT I

α
Ωi

and compute

θi = arccos

[
〈gn,ψn〉

‖gn‖L2(D) ‖ψn‖L2(D)

]

(vi) IF θi ≤ ǫθ THEN

EXIT (local optimum found!)

ELSE IF (i > 0 AND κi < ǫκ AND θi > ǫθ) THEN

Increment mesh counter, j ← j + 1;
Generate a new (finer) mesh for D with element size hj < hj−1;
GOTO (iii)

(vii) Increment iteration counter, i← i+ 1; Update level-set function:

ψi =
1

sin θi−1

[
sin((1− κi)θi−1)ψi−1 + sin(κiθi−1)

gi−1

‖gi−1‖L2(D)

]

(vii.a) In the above, perform a line-search to find κi such that

IαΩi
< IαΩi−1

At each line-search iteration, compute the corresponding uΩi

and vΩi
by solving, respectively, the elastic problem (3) and

the adjoint equation (51) for the associated Ωi with the mesh
hj . Compute the corresponding value of IαΩi

according to (2).

(viii) GOTO (iv)
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5. Numerical Examples

The effectiveness of the algorithm described above is demonstrated in
this section by means of numerical examples. In order to avoid numerical
ill-conditioning of the optimization problem we use in all examples, without
loss of generality, a normalized version of the objective functional of (27)
defined as

IαΩ(uΩ) =
|Ω|

V0
+

β

K0

∫

ΓN

g · uΩ ds+ α

∫

D̃

EΩΦp(Υ(σ(uΩ))) dx, (64)

with the normalizing factors V0 and K0 being respectively the area and the
compliance functional of the initial guess Ω0 for the optimum structure do-
main, here taken as Ω0 = D. In all the examples, we adopt the Young’s
modulus contrast Esoft/Ehard = 10−3.

5.1. Wall under shear load

The first example consists of wall under shear load (see Fig. 4).

Figure 4: Wall under shear load. Initial guess and boundary conditions.

The hold-all domain is a rectangle of size 2 × 1 clamped at its bottom
edge. The loading consists of a unit uniformly distributed horizontal force
g = (1, 0) applied along a central portion of length 0.2 of the top edge of the
hold-all domain. The material parameters Ehard = 1.0, ν = 0.3 and σ = 1 are
used. For the penalty coefficient and compliance weighting factor we choose
α = 25 with p = 32 and β = 1/4. The optimization procedure is carried out
for three different values of η. Firstly we use η = 0, corresponding to a von
Mises stress constraint and then adopt η = 0.4 and η = −0.4. The positive
η corresponds to a standard Drucker-Prager material with yield strength
greater in compression than in tension. The negative value η = −0.4 models a
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material with yield strength greater in tension than in compression. An initial
uniform mesh containing 6400 linear triangles and 3321 nodes was adopted to
discretize the hold-all domain. During the optimization procedure, one step
of uniform mesh refinement of the hold-all domain (refer to item (vi) of Box 1)
was required in all cases to achieve convergence with a tolerance ǫθ = 1◦.
Convergence was attained in 26 iterations for the von Mises constraint case
(η = 0) and 39 iterations in the other two cases (η = 0.4 and η = −0.4). The
final mesh contains contains 25600 elements and 13041 nodes. The optimal
topologies obtained are shown in Fig. 5.

(a) η = 0.0, volume fraction 40.34%

(b) η = 0.4, volume fraction 41.60%

(c) η = −0.4, volume fraction 41.60%

Figure 5: Wall under shear load. Obtained design for different values of η.

As one would expect, a symmetric structure is obtained under the von
Mises constraint. The optimal domains for the other two cases are flipped
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images of each other and, as expected, under the conventional Drucker-Prager
constraint (η = 0.4) the member under compression (on the right) is bulkier
than the member under tensile stresses (on the left).

5.2. L-bracket

Now we turn our attention to a classical structural optimization problem
containing a geometrical singularity – the L-bracket problem subject to stress
constraints. The hold-all domain and loading are illustrated in Fig. 6.

Figure 6: L-bracket. Initial guess and boundary condition.

This problem has been studied by a number of authors and various strate-
gies have been proposed for the treatment of the von Mises stress constraint,
exclusively in the context of SIMP-based methods of structural optimization
(refer to [22] and references therein). The solution of this optimization prob-
lem (with a slightly different loading condition to that of Fig. 6) under a von
Mises constraint by a topological derivative-based approach has been recently
proposed in [8]. Here we show the application of the topological-derivative
approach to the case of Drucker-Prager-type constraints. The lengths of the
horizontal and vertical branches of the L-bracket are respectively 2m and
2.5m measured along their centre lines. Both have identical width of 1m.
The structure is clamped at the top edge and a point load g = −(0, 40)KN/m
is applied to the corner of the right tip. The elastic properties of the struc-
ture material are Ehard = 12500MPa and ν = 0.2. The Drucker-Prager yield
criterion parameters are set as η = −0.3703 and σ⋆ = 63.85MPa. These are
chosen so that the Drucker-Prager yield surface matches the compressive and
tensile uniaxial yield strengths [13] of a natural wood, given respectively by
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fc = 46.6MPa and ft = 101.4MPa. The stress constraint is not enforced in
the white region of radius R = 0.15m directly under the point of load ap-
plication (shown in Fig. 6). The initial (non-uniform) mesh discretizing the
hold-all domain has 14236 three-noded triangular elements and 7323 nodes
with a higher density of elements around the reentrant corner that gives rise
to the stress singularity. Figure 7 shows the optimum structures obtained
without and with the enforcement of the Drucker-Prager stress constraint.

(a) unconstrained case (b) stress-constrained case

Figure 7: L-bracket. Obtained design for the unconstrained (volume fraction 42.96%) and
constrained (volume fraction 46.76%) cases.

In the stress-constrained case, the penalty coefficient adopted in the pe-
nalized objective functional was α = 104 with p = 32. In both cases we set
β = 1/3. As in the previous example, one step of uniform mesh refinement
(see item (vi) of Box 1) is performed in both cases to achieve convergence.
The final mesh here has a total of 58240 elements and 29532 nodes. The
convergence tolerance adopted for both unconstrained and stress-constrained
problems is ǫθ = 1◦ with a total number of iterations required for convergence
being 39 and 62, respectively. The evolution of the objective functional,
volume fraction and angle θ throughout the iterations of the optimization
algorithm is shown in Fig. 8(a–c).
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Figure 8: L-bracket. Convergence history.

We remark here that the adopted tolerances are quite stringent and a
converged design for practical purposes is in fact obtained for the constrained
case with the (quite satisfactory) initial mesh at iteration 39. This is where a
sharp variation in θ and IαΩ is depicted in Figs. 8(a) and 8(c), corresponding
to the mesh refinement step. Figure 8(d) shows the history of the worst stress
ratio in the structure:

maxΩ

√
Υ(σ(uΩ))

σ
,

whose maximum admissible value is 1. It should be observed that in the
stress constrained case shown in Fig. 7(b) the reentrant corner has been
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rounded by the algorithm. The corresponding worst stress ratio in this case
(shown in Fig. 8(d)) is 1.0184 for the converged structural domain – very
close to its saturation value of 1. In the unconstrained case, on the other
hand, the worst stress ratio blows up when minimizing the compliance due
to the geometrical singularity of the reentrant corner.

It is worth noting here that the rounding off of the reentrant corner in the
stress-constrained problem has been achieved by the present algorithm in a
most natural manner without any added post-processing techniques . This is
a mere consequence of the use of the exact formula (36) for the topological
derivative of the objective functional. This formula gives the exact sensitivity
of the penalized objective functional with respect to the considered black-
and-white-type topological changes. The only approximation here is the use
of a penalty term to enforce the required stress constraint. In SIMP-based
methodologies on the other hand, some of the exact information on the sen-
sitivity to black-and-white-type topological changes (i.e. first order terms of
the topological asymptotic expansion of the objective functional) is inevitably
lost with the introduction of the regularized density field that approximates
the sharp black-white transition. The enforcement of stress constraints with
such methods poses a more significant challenge and requires, for instance,
the use of post-processing techniques to retrieve stresses. In this context,
many such procedures have been proposed and used with success in a num-
ber of stress-constrained problems (a recent overview is provided in [22]).

5.3. Bridge design

This last example considers the design of a bridge. The hold-all domain
is a rectangle 180m long and 60m high illustrated in Fig. 9.

Figure 9: Bridge design. Initial guess and boundary conditions.

The bridge is assumed clamped at the two bottom supports of equal
length a = 9m. A uniformly distributed traffic load g = −(0, 400)KN/m2 is
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applied to the edge of the dark strip of height h = 3m indicated in Fig. 9 that
represents the road and will remain unchanged throughout the optimization
process. The strip is positioned at a distance c = 27m from the top of the
hold-all domain. The material properties are Ehard = 27500MPa and ν = 0.2.
For the purpose of comparison, the optimization procedure is carried for two
cases: (a) No stress constraints (α = 0), and (b) The Drucker-Prager stress
constraint with yield strength parameters η = 0.417 and σ⋆ = 5.05MPa.
These parameters are obtained from the Drucker-Prager biaxial fit model
[13] to match a tensile and compressive yield strength of fc = 30.5MPa and
ft = 2.75MPa respectively. For the stress-constrained case we adopt the
penalty coefficient α = 103 and in both cases we choose β = 1/10 and the
convergence tolerance ǫθ = 1◦. The stress constraint is not enforced within
the white region of size 15 × 15m adjacent to the bottom supports. Due
to symmetry, only half of the hold-all domain is discretized. The initial
(uniform) mesh has 4800 elements and 2501 nodes. In both cases, two steps
of uniform mesh refinement are performed leading to a final mesh of 76800
and 38801 nodes. Figure 10 shows the optimized topologies obtained for the
two cases.

(a) Unconstrained case

(b) Stress-constrained case

Figure 10: Bridge design. Obtained design for the unconstrained and constrained cases.

The total number of iteration required for convergence was 16 and 13,
respectively, for the unconstrained and constrained cases. Note that the
unconstrained optimization results in the well-known tie-arch bridge design.
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In this design some structural members are under tensile and others under
compressive dominant stresses. The stress-constrained optimization with the
Drucker-Prager criterion, on the other hand, results in a radically different
design where all members are subject to compressive dominant stresses. Such
designs are typical in practice for materials whose compressive strength is
much higher than their tensile strength (such as concrete). Its automatic
generation here clearly demonstrates the success of the proposed topology
optimization procedure.

6. Conclusion

This paper has extended the result derived in [8] to incorporate the
Drucker-Prager stress constraint within a topological derivative-based al-
gorithm for topology optimization of elastic structures. In this context a
penalty functional has been proposed to enforce the point-wise Drucker-
Prager constraint and a closed formula for its topological derivative has been
presented. The overall algorithm, which uses the topological derivative to
indicate the descent direction in conjunction with a level-set representation
of the structure domain, is of remarkably simple computational implemen-
tation. In particular, it does not feature post-processing procedures (such
as filtering or relaxation) of any kind and only a minimal number of user-
defined algorithmic parameters are needed. This is in sharp contrast with
current methodologies of topological structural optimization with local stress
constraints. Numerical examples have demonstrated the effectiveness and ef-
ficiency of the algorithm in the solution of topology optimization problems
under the considered class of constraints. The algorithm was shown, for in-
stance, to efficiently handle topology optimization with materials displaying
strong asymmetry in their tensile and compressive uniaxial yield strengths.
From a practical standpoint, we believe this fact to be particularly relevant
in that it opens the possibility for the efficient automatic design/optimization
of structures made of a much wider range of materials than that for which
stress-constrained topology optimization has been mainly used so far. The
extension of the present work to the three-dimensional case is currently under
investigation.
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Appendix A. Topological sensitivity analysis of the Drucker-Prager
stress penalty functional

The topological derivative of the penalty functional JΩ defined in (22) and
taking part in the rightmost term of (36) is derived here in detail. Recall
that the class of topological perturbations of Ω considered here consist of
the introduction of a circular inclusion Bε(x̂) of radius ε and center at an
arbitrary point x̂ ∈ D \ ∂Ω, as defined in (35) (refer to Fig. A.11). Possibly
shifting the origin of the coordinate system, we assume for simplicity and
without loss of generality that x̂ = 0. For all ε ≥ 0, the state equations can
be rewritten as:





−div (γεσ(uε)) = 0 in D,
uε = 0 on ΓD,

γεσ(uε)n = g on ΓN ,
σ(uε)n = 0 on Γ0,

(A.1)

where we have introduced the notations uε := uΩε
and

γε =

{
γ0 in D \Bε,
γ1 in Bε.

(A.2)

We assume that γ0 := EΩ and γ1 := γEΩ, with the contrast γ given by (42),
are two positive functions defined in D and constant in a neighborhood of x̂.

In order to derive a closed formula for the topological derivative DTJΩ
we need to obtain a topological asymptotic expansion of the form

Jε(uε)− J0(u0) = f(ε)DTJΩ + o(f(ε)), (A.3)

where the function f has already been identified in Sections 3.1 and 3.2 as
f(ε) = ε2 and, for simplicity in the derivation that follows, we adopt the
notation u0 := uΩ, J0 := JΩ and

Jε(u) := JΩε
(u) =

∫

D̃

γεΦ(Υ(σ(u)))dx. (A.4)

In obtaining the above topological asymptotic expansion, we shall follow
the approach described in [6] for the Laplace problem. Here, however, the
calculations are more elaborate but the estimates of the remainders, i.e. the
terms of higher order in f(ε) gathered in the rightmost term of the right hand
side of (A.3), are analogous to those of [6]. Hence in what follows we shall
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skip the calculation of the estimates. The reader interested in the complete
proofs may refer to [6]. We start by stating the following important result,
whose proof can be found in [4]:

Proposition 5. Let V be a linear space and ε0 > 0. For all ε ∈ [0, ε0),
consider a vector uε ∈ V solution of a variational problem of the form

aε(uε, v) = ℓε(v) ∀v ∈ V, (A.5)

where aε and ℓε are, respectively, a bilinear and a linear form on V. Consider
also, for all ε ∈ [0, ε0), a functional Jε : V → ℜ and a linear form Lε(u0) ∈
V ′. Assume that the following hypotheses hold:

1. There exist two numbers δa and δℓ and a function ε ∈ ℜ+ 7→ f(ε) ∈ ℜ
such that, when ε goes to zero,

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)), (A.6)

(ℓε − ℓ0)(vε) = f(ε)δℓ+ o(f(ε)), (A.7)

lim
ε→0

f(ε) = 0. (A.8)

Following standard convention, (aε−a0)(u0, vε) = aε(u0, vε)−a0(u0, vε)
and (ℓε − ℓ0)(vε) = ℓε(vε) − ℓ0(vε), where vε ∈ V is solution to the
following auxiliary problem (the standard adjoint state associated with
(A.4) when ε = 0):

aε(ϕ, vε) = −〈Lε(u0),ϕ〉 ∀ϕ ∈ V. (A.9)

2. There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + 〈Lε(u0),uε − u0〉+ f(ε)δJ1 + o(f(ε)),(A.10)

Jε(u0) = J0(u0) + f(ε) δJ2 + o(f(ε)). (A.11)

Then we have

Jε(uε)− J0(u0) = f(ε)(δa− δℓ+ δJ1 + δJ2) + o(f(ε)). (A.12)

The bilinear and linear forms associated with Problem (A.1) are classi-
cally defined in the space V given by (6) as follows:

aε(u, v) =

∫

D

γεσ(u) · e(v) dx ∀u, v ∈ V, (A.13)

ℓε(v) =

∫

ΓN

g · u ds ∀u ∈ V. (A.14)
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At the point u0 of V (solution of the state equations for the unperturbed
domain), the penalty functional admits the tangent linear approximation
Lε(u0) given by:

〈Lε(u0),ϕ〉 =

∫

D̃

γεk1(u0)[Bσ(u0) ·e(ϕ)+ ξ tre(ϕ)]dx ∀ϕ ∈ V, (A.15)

where k1 is defined in (45). Then the adjoint state is a (weak) solution of
the boundary value problem:





−div (γεσ(vε)) = div [γεk1(u0)(Bσ(u0) + ξI)] in D,
vε = 0 on ΓD,

γεσ(vε)n = −γεk1(u0)(Bσ(u0) + ξI)n on ΓN ∪ Γ0,
[[γεσ(vε)]]n = −[[γεk1(u0)(Bσ(u0) + ξI)]]n on ∂Bε,

(A.16)
where [[γεσ(vε)]]n denotes the jump of the normal stress across the interface
∂Bε. Before proceeding, we make the following assumptions:

1. For any r1 > 0 there exists r2 ∈ (0, r1) such that every function u ∈
H1(D \B(x̂, r2))

2 satisfying




−div (γ0σ(u)) = 0 in D \B(x̂, r2),

u = 0 on ΓD,
γ0σ(u)n = 0 on ΓN ∪ Γ0

(A.17)

belongs to W 1,4(D̃ \B(x̂, r1))
2.

2. The load g is such that u0 ∈ W
1,4(D̃)2.

And we also note that, by elliptic regularity, u0 and v0 are automatically of
class C1,β , β > 0, in the vicinity of x̂ provided that x̂ ∈ D \ ∂Ω \ ∂D̃.

Remark 6. The above assumption is satisfied in many situations, including
non-smooth domains such as, for instance, in the following case:

• D is a Lipschitz polygon,

• ΓN ∩ ∂D̃ = ∅ and ΓD ∩ ∂D̃ = ∅,

• the interface ∂Ω \ ∂D is the disjoint union of smooth simple arcs,
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• if a junction point between the interface and ∂D belongs to ∂D̃, then the
Young modulus distribution around this point is quasi-monotone (see
the definition in [21]); in particular, if only one arc touches ∂D at this
point, it is sufficient that the angle defined by these curves in D \ Ω is
less than π.

We refer to [21] and the references therein for justifications and extensions.

Figure A.11: Topologically perturbed domain.

Appendix A.1. Variation of the bilinear form

In order to make use of the result of Proposition 5, we need to obtain a
closed formula for the leading term of the variation of the bilinear form

(aε − a0)(u0, vε) =

∫

Bε

(γ1 − γ0)σ(u0) · e(vε)dx. (A.18)

In deriving the closed formula, we shall denote Ei(ε), i = 1, 2, ..., the remain-
ders – terms of higher order in f(ε):

lim
ε→0

Ei(ε)

f(ε)
= 0 (A.19)
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– identified in (A.18). By setting ṽε := vε−v0, with v0 := vΩ, and assuming
that ε is sufficiently small so that γε is constant in Bε, we obtain:

(aε−a0)(u0, vε) = (γ1−γ0)(x̂)

(∫

Bε

σ(u0) · e(v0)dx+

∫

Bε

σ(u0) · e(ṽε)dx

)
.

(A.20)
Since u0 and v0 are smooth in the vicinity of x̂, we approximate σ(u0) and
e(v0) in the first integral by their values at the point x̂, and write:

(aε−a0)(u0, vε) = (γ1−γ0)(x̂)

(
πε2σ(u0)(x̂) · e(v0)(x̂) +

∫

Bε

σ(u0) · e(ṽε)dx+ E1(ε)

)
.

(A.21)
As vε is solution of the adjoint equation (A.16), the function ṽε solves





−div(γεσ(ṽε)) = 0 in Bε ∪ (D \Bε),
[[γεσ(ṽε)n]] = −(γ1 − γ0) [k1(u0)(Bσ(u0) + ξI) + σ(v0)] n on ∂Bε,

ṽε = 0 on ΓD,
σ(ṽε)n = 0 on ΓN ∪ Γ0.

(A.22)
We recall that, as before, the boundary value problem (A.22) is to be under-
stood in the weak sense for ṽε ∈ H

1(D)2. We set S := S1 + S2, with

S1 := k1(u0)(x̂)(Bσ(u0)(x̂) + ξI) and S2 := σ(v0)(x̂). (A.23)

We approximate σ(ṽε) by σ(hSε ) – solution of the following auxiliary prob-
lem:




−div(σ(hSε )) = 0 in Bε ∪ (ℜ2 \Bε),
[[γεσ(h

S
ε )]]n = −(γ1 − γ0) (x̂)Sn on ∂Bε,

σ(hSε ) → 0 at ∞,
(A.24)

In the present case of a circular inclusion, the tensor field σ(hSε ) that solves
the exterior problem (A.24) has the following classical expression [23] in a
polar coordinate system (r, θ):
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• for r ≥ ε

σr(r, θ) = − (α1 + α2)
1− γ

1 + aγ

ε2

r2

−
1− γ

1 + bγ

(
4
ε2

r2
− 3

ε4

r4

)
(β1 cos 2θ + β2 cos 2(θ + φ)) ,(A.25)

σθ(r, θ) = (α1 + α2)
1− γ

1 + aγ

ε2

r2

− 3
1− γ

1 + bγ

ε4

r4
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.26)

σrθ(r, θ) = −
1− γ

1 + bγ

(
2
ε2

r2
− 3

ε4

r4

)
(β1 sin 2θ + β2 sin 2(θ + φ)) ,(A.27)

• for 0 < r < ε

σr(r, θ) = (α1 + α2) a
1− γ

1 + aγ

+ b
1− γ

1 + bγ
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.28)

σθ(r, θ) = (α1 + α2) a
1− γ

1 + aγ

− b
1− γ

1 + bγ
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.29)

σrθ(r, θ) = −b
1− γ

1 + bγ
(β1 sin 2θ + β2 sin 2(θ + φ)) , (A.30)

Some terms in the above formulas require explanation. The parameter φ
denotes the angle between the eigenvectors of the tensors S1 and S2,

αi =
1

2
(siI + siII) and βi =

1

2
(siI − s

i
II), i = 1, 2, (A.31)

where siI and s
i
II are the eigenvalues of the tensors Si for i = 1, 2. In addition,

the constants a and b are given by (43) and γ is the contrast, defined in (42),
evaluated at x̂.

From the above, we obtain successively:
∫

Bε

σ(u0) · e(ṽε)dx =

∫

Bε

σ(ṽε) · e(u0)dx =

∫

Bε

σ(hSε ) · e(u0)dx+ E2(ε).

(A.32)
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Then, by approximating e(u0) in Bε by its value at x̂ and calculating the
resulting integral with the help of the expressions (A.28)-(A.30), we get

∫

Bε

σ(u0) · e(ṽε)dx =

∫

Bε

σ(hSε ) · e(u0)(x̂)dx+ E2(ε) + E3(ε)

= −πε2ρ [k1(u0)T(Bσ(u0) + ξI) · e(u0)

+ Tσ(u0) · e(v0)] (x̂) + E2(ε) + E3(ε),

(A.33)

with ρ and T given by (40) and (41), respectively.
Finally, the variation of the bilinear form can be written as:

(aε − a0)(u0, vε) = −πε
2(γ1 − γ0)(x̂)ρ

(
k1(u0)b(Bσ(u0) + ξI) · e(u0)+

k1(u0)
a− b

2(1 + γa)
tr[Bσ(u0) + ξI] tre(u0)−

b+ 1

γ − 1
σ(u0) ·e(v0)+

a− b

2(1 + γa)
trσ(u0) tre(v0)

)
(x̂)+(γ1−γ0)(x̂)

3∑

i=1

Ei(ε).

(A.34)

Appendix A.2. Variation of the linear form

Since here ℓε is independent of ε, it follows trivially that

(ℓε − ℓ0)(vε) = 0. (A.35)

Appendix A.3. Partial variation of the penalty functional with respect to the
state

We now focus on the variation:

VJ1(ε) = Jε(uε)− Jε(u0)− 〈Lε(u0),uε − u0〉, (A.36)

which in view of the definition of Jε and Lε reads

VJ1(ε) =

∫

D̃

γε [Φ(Υ(σ(uε)))− Φ(Υ(σ(u0))) −

Φ′(Υ(σ(u0)))(Bσ(u0) · e(uε − u0) + ξtre(uε − u0))] dx. (A.37)
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By setting ũε = uε − u0, we can re-write:

VJ1(ε) =

∫

D̃

γε

[
Φ(Υ(σ(u0))+Bσ(u0) ·e(ũε)+Υ(σ(ũε)))−Φ(Υ(σ(u0)))−

Φ′(Υ(σ(u0)))(Bσ(u0) · e(ũε) + ξtre(ũε))

]
dx. (A.38)

Since uε is the solution of the state equation (A.1), by difference we find that
ũε solves:





−div(γεσ(ũε)) = 0 in Bε ∪ (D \Bε),
[[γεσ(ũε)]]n = −(γ1 − γ0)σ(u0)n on ∂Bε,

ũε = 0 on ΓD,
σ(ũε)n = 0 on ΓN ∪ Γ0.

(A.39)

By setting now S = σ(u0(x̂)), we approximate ũε by hSε – the solution of
the auxiliary problem (A.24). Then, we have

VJ1(ε) =

∫

D̃

γε

[
Φ(Υ(σ(u0))+Bσ(u0)·e(h

S
ε )+Υ(σ(hSε )))−Φ(Υ(σ(u0)))−

Φ′(Υ(σ(u0)))(Bσ(u0) · e(h
S
ε ) + ξtre(hSε ))

]
dx+ E4(ε). (A.40)

If x̂ ∈ D\D̃, by using a Taylor expansion of Φ and the estimate |σ(hSε )(x)| =
o(ε2) which holds uniformly with respect to x a fixed distance away from x̂,

we can easily establish that VJ1(ε) = o(ε2). Thus we assume that x̂ ∈ D̃ (the

special case where x̂ ∈ ∂D̃ is not treated). In view of the decay of σ(hSε ) at
infinity and the regularity of u0 near x̂, we write

VJ1(ε) =

∫

ℜ2

γ∗ε

[
Φ(Υ(σ(u0))(x̂)+Bσ(u0)(x̂)·e(h

S
ε )+Υ(σ(hSε )))−Φ(Υ(σ(u0))(x̂))−

Φ′(Υ(σ(u0))(x̂))(Bσ(u0)(x̂) · e(h
S
ε ) + ξtre(hSε ))

]
dx+ E4(ε) + E5(ε),

(A.41)
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with γ∗ε (x) = γ1(x̂) if x ∈ Bε and γ∗ε (x) = γ0(x̂) otherwise. The above
expression can be rewritten as

VJ1(ε) =

∫

ℜ2

γ∗ε

[
Φ(1

2
B̃S·S+2ησtrS+B̃S·σ(hSε )+2ησtrσ(hSε )+

1
2
B̃σ(hSε )·σ(h

S
ε ))−

Φ(1
2
B̃S·S+2ησtrS)−Φ′(1

2
B̃S·S+2ησtrS)(B̃S·σ(hSε )+2ησtrσ(hSε ))

]
dx+E4(ε)+E5(ε).

(A.42)

We shall denote VJ11(ε) and VJ12(ε) the parts of the above integral computed
over Bε and ℜ2 \ Bε, respectively. By using the expressions (A.28)-(A.30),
we find

VJ11(ε) = πε2γ1(x̂)

[
Φ(1

2
B̃S·S+2ησtrS−ρ(B̃x·TS+2ησtr(TS))+ρ2 1

2
B̃TS·TS)−

Φ(1
2
B̃S · S + 2ησtrS) + ρΦ′(

1

2
B̃S · S + 2ησtrS)(B̃S · TS + 2ησtr(TS))

]
.

(A.43)

Next, we define the following function:

SS
ρ (x) := σ(hSε )(εx), (A.44)

which is independent of ε. Then, a change of variable of the form y = ε−1x

yields

VJ12(ε) = ε2
∫

ℜ2\B

γ0(x̂)

[
Φ(1

2
B̃S·S+2ησtrS+B̃S·SS

ρ+2ησtrSS
ρ+

1
2
B̃SS

ρ ·S
S
ρ )−

Φ(1
2
B̃S · S + 2ησtrS)− Φ′(1

2
B̃S · S + 2ησtrS)(B̃S · SS

ρ + 2ησtrSS
ρ )

]
dy.

(A.45)

Next, we set

Ψρ(S) :=

∫

ℜ2\B

[
Φ(1

2
B̃S ·S +2ησtrS + B̃S ·SS

ρ +
1
2
B̃SS

ρ ·S
S
ρ +2ησtrSS

ρ )−

Φ(1
2
B̃S·S+2ησtrS))−Φ′(1

2
B̃S·S+2ησtrS)(B̃S·SS

ρ+
1
2
B̃SS

ρ ·S
S
ρ+2ησtrSS

ρ )

]
dy.

(A.46)
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The extra term 1
2
B̃SS

ρ ·S
S
ρ has been added so that Ψρ(S) vanishes whenever

Φ is linear. Thus we have

VJ12(ε) = ε2γ0(x̂)

[
Ψρ(S)+

1
2
Φ′(1

2
B̃S·S+2ησtrS)

∫

ℜ2\B

B̃SS
ρ ·S

S
ρdy

]
. (A.47)

By using the expressions (A.25)–(A.27), a symbolic calculation of the above
integral gives

VJ12(ε) = ε2γ0(x̂)

[
Ψρ(S) + 1

4
πρ2k1(u0)(x̂)

(
(5− 8η2)(2S · S − tr2S) + 3

(
1 + bγ

1 + aγ

)2

tr2S

)]
.

(A.48)
Further, after a change of variable and rearrangements, Ψρ(S) reduces to
(49), with S = σ(u0(x̂)). Finally, we obtain:

V J1(ε) = πγ1(x̂)

[
Φ(1

2
B̃S·S+2ησtrS−ρ(B̃S·TS+2ησtr(TS))+ρ2 1

2
B̃TS·TS)−

Φ(1
2
B̃S · S + 2ησtrS) + ρΦ′(1

2
B̃S · S + 2ησtrS)(B̃S · TS + 2ησtr(TS))

]
+

γ0(x̂)

[
Ψρ(S) + 1

4
πρ2k1(u0)(x̂)

(
(5− 8η2)(2S · S − tr2S) + 3

(
1 + bγ

1 + aγ

)2

tr2S

)]
+

E4(ε) + E5(ε). (A.49)

Appendix A.4. Partial variation of the penalty functional with respect to the
domain

The last term is easily treated as follows:

V J2(ε) := Jε(u0)− J0(u0)

=

∫

Bε∩D̃

(γ1 − γ0)Φ(Υ(σ(u0)))dx

= πε2χD̃(x̂)(γ1 − γ0)(x̂)Φ(Υ(σ(u0))(x̂)) + E6(ε)

= πε2χD̃(x̂)(γ1 − γ0)(x̂)Φ(
1
2
B̃S · S + 2ησtrS) + E6(ε).(A.50)

Appendix A.5. Topological derivative

Analogously to the derivation presented in [6] which dealt with the Laplace
equation, with the regularity resulting from assumptions 1 and 2 surrounding

38



equation (A.17) we can prove that the remainders E1(ε), · · · , E6(ε) identified
in the above analysis behave as o(ε2). Hence, after the summation of the
different terms according to Proposition 5 followed by a few simplifications,
we finally arrive at the following exact formula for the topological asymptotic
expansion of the penalty functional:

Jε(uε)− J0(u0) = ε2DTJΩ + o(ε2), (A.51)

with the topological derivative DTJΩ given by (44).
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[27] A.A. Novotny, R.A. Feijóo, E. Taroco & C. Padra. Topological sensitiv-
ity analysis for three-diensional elasticity problem. Computer Methods
in Applied Mechanics and Engineering, 196(41-44):4354–4364, 2007.

[28] AltairR© OptiStructR©. Altair Engineering, Inc. Web page
http://www.altairhyperworks.com.

[29] J.T. Pereira, E.A. Fancello & C.S. Barcellos. Topology optimization of
continuum structures with material failure constraints. Structural and
Multidisciplinary Optimization, 26(1-2):50–66, 2004.

[30] J. Rocha de Faria & A.A. Novotny. On the second order topological
asymptotic expansion. Structural and Multidisciplinary Optimization,
39(6):50–66, 2009.

41



[31] J. Sokolowski & A. Zochowski. On the Topological Derivatives in Shape
Optmization. SIAM Journal on Control and Optimization, 37(4):1251–
1272, 1999.

42




