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CONNECTIONS BETWEEN TOPOLOGICAL SENSITIVITY ANALYSIS AND
MATERIAL INTERPOLATION SCHEMES IN TOPOLOGY OPTIMIZATION

SAMUEL AMSTUTZ

ABSTRACT. Material interpolation schemes, like SIMP, are very popular in topology optimiza-
tion. They convert the difficult 0-1 problem into a nonlinear programming problem defined
over a convex set by involving an interpolation (or penalization) function, usually constructed
in rather empirical ways. This paper gives an insight into such methods with the help of the
notion of topological sensitivity, and in particular provides some arguments for the choice of the
penalization function. A simple algorithm based on these concepts is proposed and illustrated
by numerical experiments.

1. INTRODUCTION

Let D be a bounded domain of R%, d = 2 or 3, with a Lipschitz boundary I made of two disjoint,
parts I'p and I'y, with I'p of nonzero measure and I'y of class C'. We focus on the following
minimization problem, with the notation specified below:

in J(v, 1

o nin (7, w) (1)

subject to / YVu.Vndz = / pnds Vn e V. (2)
D I'n

The symbol V stands for the gradient operator, and the dot notation is used for the canonical
scalar product of R?. For the two unknowns ~ and u the feasible sets are respectively

E:={y:D — {y,v"}, v measurable},
V:={ue HI(D),U‘FDZO}.

The constants v+ > 4~ > 0, the distribution ¢ € H=Y/2(T'y), and the functional J : £ x V — R
are given data. For convenience we denote by j(7y) := J (7, uy) the reduced cost, or objective, with
u~ the solution of (2). Subsequently v and u, will be referred to as the density (or conductivity)
and the state, respectively. Note that, in many applications, the weak phase approximates an
empty region, which means that v~ < y*.

Due to the “bang-bang” nature of the targeted density v, Problem (1)-(2) falls into the framework
of topology optimization. A number of methods have been devised for its solution, which we briefly
recall. A first class of methods, sometimes known as classical shape optimization [19, 27|, relies
on the control of the interface I'y where v jumps. The sensitivity analysis of the objective with
respect to the position of I'y leads to the notion of shape derivative. Algorithms based on the shape
derivative produce in principle smooth variations of I'y, in particular, the number of its connected
components cannot change. This is a serious drawback in many applications. An important
exception must nevertheless be mentioned. It concerns level set methods [4, 22, 23], where I, is
represented as the zero level set of a smooth function 1) defined over D. A Hamilton-Jacobi equation
is then often used to move the interface in the desired direction. Within this setting, connected
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components can cancel or merge, but can hardly be created, at least in two dimensions. In fact,
these methods lack a nucleation mechanism. The topological sensitivity analysis aims precisely at
evaluating the variation of the objective when + is switched within a small region. This concept
has been introduced in [15], mathematically justified in [16, 26], and then developed by several
authors, see, e.g., [6, 7, 17, 20, 21]. Therefore, the topological sensitivity may be advantageously
combined with level set methods [3, 8, 13]. A basically different class of methods consists in relaxing
the constraint v(x) € {y~,+yT}. This is usually achieved by invoking the homogenization theory
[1, 10]. This latter approach benefits from nice theoretical properties, like differentiability and
existence of global minimizers. However, eventually retrieving a feasible solution requires a rather
heuristic penalization post-processing. Simplified methods, called material interpolation schemes
or methods of fictitious materials [9, 11, 12, 25], are very popular in the engineering community.
They are based on the two following principles. Firstly, the set of admissible values {y~,y*} is
simply extended to its convex hull [y, 7], thus the whole theory of homogenization is not needed.
Secondly, the penalization is directly included in the optimization process by a modification of the
state equation. Typically, in the SIMP model (Solid Isotropic Material with Penalization), the
density v in (2) is replaced by a power law 6() = 4P which, for some objective functions, tends
to enforce extremal values. This formulation has proven particularly simple and efficient in many
important cases. However, it has no proper theoretical justification, and the choice of the exponent
p is mainly empirical.

The purpose of this paper is to give an insight into material interpolation schemes by interpreting
the associated first order necessary optimality conditions in terms of topological sensitivity. We
show that special penalization functions 6 can be related to isotropic topological perturbations,
which provides a clear meaning to the solutions obtained through this model. The power law
penalization is retrieved in particular cases.

The paper is organized as follows. The notion of topological sensitivity is recalled in Section 2.
The aforementioned relations between material interpolation schemes and topological sensitivity
are exhibited in Section 3. The case of anisotropic perturbations is discussed in Section 4, comple-
mented by Appendix A. The extension to the linear elasticity setting is addressed in Section 5. A
gradient-like algorithm based on these concepts is described in Section 6. Numerical experiments
are reported in Sections 7 and 8.

2. TOPOLOGICAT, SENSITIVITY AND OPTIMALITY CONDITIONS

In the sequel we shall use the following standard notation. The dot product of two vectors
z,y € R? is denoted, as in the introduction, by z.y, while the Euclidean norm of z is denoted by
|z|. The open ball of center # € R¢ and radius p > 0 is denoted by B(%, p) := {z € R% |z — 3| < p}.
If A is a subset of R%, |A| stands for the d-dimensional Lebesgue measure of A. In addition, x4
stands for the characteristic function of A, i.e., xa(z) = 1if z € A, xa(z) =0if z ¢ A. The
interior of A is denoted by int 4, i.e., int A := {x € A s.t. Ip > 0, B(x,p) C A}. For any v € £ we
define the sets

[y=9"T={z€Dy(x)=7"}, [y=77]={zeD,y@)=7"}
+ . _ ot - A
D7 = int[y =7, D7 =intly =v7].
We also define the function s, : Dj UD; — R by

1 if zeD;
_ v
Sv(x){ -1 if zeDI.

Below we define a notion of local optimality relative to a particular class of perturbations. More
general perturbations are considered in Section 4.
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Definition 2.1. We say that v € £ is a local minimizer of j if, for every family (x1,...,2n) €
(D3 UD;)N, N € N\ {0}, there exists p > 0 such that, for all (p1,...,pn) € RY,

— . + _ .
max, pi <p==j <7+ (V"= )st(xi)XB(wi,pi)> > j()-

i=1
’ i=1

In other words, the domain [y = 7] is said to be locally optimal if j(y) cannot be decreased by
the creation of an arbitrary set of small spherical inclusions. The concept of topological derivative
gives a quantitative information on the variation of j(v) with respect to such perturbations.

Definition 2.2. We say that the functional j admits a topological derivative g(&) at the point
T e D,JYr U D7 if the following asymptotic expansion holds when p — 0:

J(r+54(@) (v =77 )XBae) — (V) = 55 (@) (YT —7)IB(&, p)lgy (&) + o(|B(Z, p)]),  (3)

oBp) _

with lim, o "B(5.0)]

As a straightforward consequence of Definitions 2.2 and 2.1 we derive the following result.

Lemma 2.3. Suppose that «y is a local minimizer of j and j admits a topological derivative g (x)
at all point x € DT U D7 . Then

g+(z)

0 Ve e Dy,
g+(7) <0

Vo € D,‘yIr ) (4)

IN IV

Proof. We choose a single perturbation centered at a point &, for instance & € D . By Definition
2.2 we have

i+ (T = )XB@w) —i() = (v =7)IB(&, p)lgy(2) + o(| B(&, p)]).

In view of Definition 2.1 this quantity is nonnegative as soon as p is sufficiently small. Dividing by
|B(Z, p)| and passing to the limit as p — 0 entails g, (Z) > 0. Likewise g, (%) < 0 when & € D¥. O

To fix ideas, we assume henceforth that the objective functional is of the form
T = [ uds e [ ade (5)
I'n D

with ¢» € H=/?(Ty). The scalar constant ¢ can be seen as a Lagrange multiplier associated with
a volume constraint. The following result is proven in [6].

Proposition 2.4. When J is defined by (5), the reduced cost j admits a topological derivative
g~(x) at each point x € D,f given by

9 (2) = kX y(2)Vu, (2). Vo, (z) + £,

where the adjoint state v, € V solves

/ YV, .Vnde = — Ynds Yn €V, (6)
D

I'n

and the expression of k* is reported in Table 1.



[d] 2 3

- 2 3
YAy~ |yt 4297

n 2 3
YAy~ | 29T+ 4

TABLE 1. Expressions of k* for the conductivity problem.

3. CONNECTION WITH MATERIAL INTERPOLATION SCHEMES

We now consider the auxiliary problem

min J(v,u) ™)

(v, u)€EXVY

subject to / 9(7)Vu.Vnd:c:/ ends Vn e V. (8)
D I'ny

Compared with (1)-(2), v is sought in the convex set
E:={y:D = [y~,7"],» measurable},

and the state equation is modified by the introduction of a smooth (at least C') function 6 :
(v ) = (v, with 0 < v < 47 < 4t < 4TF. We assume further that 6 is
increasing and satisfies
0(y") =17,  0(r") ="
For this problem we denote by jg(7) := J (7, ug ) the reduced cost, with ug ., the solution of (8).
We will afterwards use standard notions of differential calculus in Banach spaces. The reader
who is not familiar with this field may refer, e.g., to [14, 18]. More specifically, the following

proposition is a direct application of the adjoint method for the calculus of derivatives (see, e.g.,
[2, 18]).

Proposition 3.1. The reduced cost jg is Fréchet differentiable on L>(D, (v~ ,y*")) with the
derivative in the direction § € L>(D) given by

ng('y)(Sz/ 9o ~0dz, (9)
D

with
go,y = 0'(v)Vug.Vvg, + L,
and the adjoint state vg, € V solution of
/ 0(v)Vvg,.Vnde = — Ynds Y e V. (10)
D I'n

Proof. First, it stems from the implicit function theorem that the mapping S : v € L>®(D, (y~"—,77 1))
ug,y € V is Fréchet differentiable. We write for simplicity g 4 := DS(ug,~)d the derivative in the
direction § € L>°(D). Then jy is differentiable by composition, and the chain rule yields

ng(v)éz/ zpagﬂderﬂ/ odx.
D

I'n

On using the adjoint equation (10) to rewrite the first integral we obtain

Djo(v)d = —/ 9(7)VU9,7.vu9,vdx+e/ ddzx. (11)
D D



Now differentiating (8) yields
/ 10" (7)0Vug,~. V1 + 0(7)Vig,.Vnlde =0 Vn e V. (12)
D

Combining (11) and (12) provides (9). O

For the optimality of jy we use the standard definition recalled below. For simplicity we denote
by |.|| the L> norm on D, i.e., ||v|| = inf{c,|y| < ¢ a.e. in D}.

Definition 3.2. We say that v € £ is a local minimizer of jy if there exists a > 0 such that
Vi€l Il =All<a=je(y) <je(H)
From Proposition 3.1 we derive the following necessary optimality conditions.
Corollary 3.3. Suppose that v is a local minimizer of jo. Then
9o,y 20 a.e on [y=77],

goy, =0 ae on [y~ <vy<~T] (13)
go.y <0 ae on [y=~T].

Proof. By virtue of the convexity of €& we have the optimality condition (see, e.g., [18])

Djo(v)(5—7) =20  Vye&.
Consider an arbitrary pair (A,d) € (y~,7T) x L>(D) with § > 0 a.e., and set

T =7+ Xpato.
For ¢ > 0 sufficiently small we have 5 € &, hence

Djo(v) (7 =) = t/ go,0dx > 0.

[v<A]
It follows that
/ go,0dx >0 V6 € L*=(D),d >0,
[v<Al

and subsequently that
9o~ > 0a.e. on [y <A
Similarly we find that
g9~ <0 ae. on[y>Al.
Using that A € (y~,~T) is arbitrary completes the proof. O

From comparison of Lemma, 2.3 and Corollary 3.3, it appears that, apart from the convexification
of the feasible set, the two optimality systems essentially differ by the expression of the sensitivities.
Then a natural question arises: is there a function € such that those two sensitivities coincide?
This question is addressed by the following theorem.

Theorem 3.4. There exists a unique polynomial function v — 0(7y) of degree not larger than 3
such that 0(y(x)) = y(x) and go (x) = g, (x) for all v € £ and all x € DS U D . This function is
given by

9()::72+7+7*

v+
ow%:—ﬁ+ﬁﬁ++vﬂf+ﬂVﬁfﬁ++vﬂ
2y +17)(vF +277)

If 0 is chosen as above, v € € and |D\ D \ Df| =0, then jo(y) = j(7) and the conditions (4)
and (13) are equivalent.

ifd =2,
(14)

if d = 3.



Proof. In order to fulfill the assertions of the theorem we need to construct a smooth function
such that

0y ) =77, (") =~", 0=k, OGT) =k (15)
For a polynomial interpolation of the form
0(v) = azy’ + a2y’ + a1y + ao,
the conditions (15) are equivalent to

as(v")? +aa(v ) +ary a0 =177,
as(v")? +aa(vh)? +aryt + a0 =97,

1
az(v")? +2a2y” a1 =k, (16)
3azg(y")? + 2a2yt + a1 = kT
By Gauss elimination, we find that the above system admits a unique solution given by
" ktyt + k=™ =2
3 = )
Viiﬂii - -~ + A
gy = LZFNOT+2y)+ A -k )" +97)
+~t —(7++771)2 ==Yyt ’+ -
g =1 LAY @A)+ A -k Ty 4 207)
(v =v7)? ’
Al (1= kT )y + (1 =k )]
ao=—F——5 (L —kT7")y — k)T
(yr=77)?
Now using the expressions of k™ and k¥~ from Table 1 results in (14). O
Remark 3.5. For y7 =1 and v~ — 0 we have
0(7) ~ if d =2,
1 3 17
9(7)~—§73+572 if d=3. (17)

These functions are plotted in Figure 1.

Remark 3.6. By virtue of the relations
ID\D;\ D = |ly=~"]\intly =]+ [y = v7] \int[y = 77|
< Joly=~"ll+18ly =71l,
the condition [D \ D\ D] = 0 will be fulfilled as soon as the sets d[y = 7*] and [y = 77|

have zero d-dimensional Lebesgue measure. This will hold true whenever those sets have some
smoothness, for instance, when they are Lipschitz.

Remark 3.7. Of course, Theorem 3.4 does not imply that Problems (1)-(2) and (7)-(8) are equiv-
alent since there is no guarantee that the solutions (global or local) to (7)-(8) belong to £. We
mention in this respect the paper [24], where it is proven that, for 6(y) = ~?, in the self-adjoint
case and for a discrete version, solutions to (7)-(8) are necessarily in £ for p sufficiently high.

4. ON OPTIMALITY WITH RESPECT TO ELLIPTIC PERTURBATIONS

This section deals with the extension of the previous concepts of topological sensitivity analysis
and related optimality conditions to non spherical inclusions. This means that, in the asymptotic
expansion (3), B(&, p) is replaced by

w(Z, p) =T+ pw,
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FIGURE 1. Function 6 for v© =1 and v~ — 0, from top to bottom: conductivity
3D, conductivity 2D, linear elasticity 2D.

where w is an arbitrary reference domain. When it exists, the associated topological derivative is
denoted by g4 .. The following result is proven in [6].

Proposition 4.1. When J is defined by (5), the reduced cost j admits a topological derivative
Gvyw(T) at each point x € D,jf given by

Gyw() = Py »Vuy(x).Vu,(z) + £, (18)

where the adjoint state v, € V solves

/ YV, .Vnde = — Ynds Vn e V. (19)
D

I'n
The polarization matriz P, , is always symmetric and depends only on w and the density contrast
r, e, v =5"/y" ifx € D7, v =~"/y" ifx € DI. If w is the ellipse with semi major and
minor azes of length 1 and e, respectively, directed along the main azes of the coordinate system,
then the polarization matriz admits the expression

1+e
Pw,r :Qr,e = 1—BT€ 1+4+e
e+r

Detailed properties of polarization matrices can be found in [5]. In particular, if w’ = Rw where
R belongs to the set U of unitary transformations of R?, then the associated polarization matrix
becomes

P,.,.=RP,,.R".
The following theorem states topological optimality conditions with respect to the class of all
elliptic inclusions. The proof, which is fairly technical, is deferred to Appendix A.

Theorem 4.2. Set U =Vu,, V=Vu,, M =(U®V+V®U)/2, and denote by A™ and A~ the
largest and smallest eigenvalues of M, respectively, i.e.,

a2 VAUVl - UV - UiV (20)
2 2
Define
’Y_+A+ +A" 4+ in D7, (a)
g; — 24 (21)

,}/4’
—A"+ A" +¢ in DI, (b)
v



A necessary optimality condition for v € & to be a local minimizer of j with respect to arbitrary
elliptic inclusions is
@@)>0 VreDs, (a)

G(x) <0 VreDF. () (22)

Let us now give some practical implications of Theorem 4.2.
(1) In the self-adjoint case v, = —u,, (i.e., ) = ¢) we derive
g5 = —|Vu,|* + ¢ in D UD>.

Then solving the optimality conditions (22) amounts to finding a solution (y,u) € £ x V
of (7)-(8) with the interpolation function 6(y) = v (see Proposition 3.1 and Corollary
3.3). It is well known (see, e.g., [2]) that this problem admits solutions in € x V, but the
corresponding 7 is usually not of bang-bang type. This suggests that (22) has few chances
to admit a solution in &.

(2) Consider now a non self-adjoint case and a point x € DI where Vu,(z) # —Vuv,(z).
Hence AT (z) > 0, and (22)(b) reads

,y+
5

When v~ <« 47, the above condition is hardly fulfilled, which again suggests the absence
of local minimizer relative to elliptic inclusions.
We therefore conclude that imposing optimality with respect to the class of all elliptic inclusions
is generally too strong to allow for the existence of solutions in £. This implies that interpolation
methods attempting to solve these conditions are likely to generate regions of intermediate density,
which are usually undesirable due to their unclear mechanical interpretation [2, 11]. Accordingly,
we subsequently limit ourselves to spherical inclusions.

5. GENERALIZATION TO LINEAR ELASTICITY

We consider now a linear elasticity problem in two space dimensions. The domain D is defined
as before. The state is the displacement field
uwey:= {’LL € (Hl(D))Qau\FDZO}a
and the equilibrium equation reads
/ yo(u): Vn = / p.nds Vn e V.
D I'n

Here o(u) is the stress normalized to a unitary Young modulus, V°n := (Vn + V77)/2 is the
symmetric gradient (strain), and ¢ € (H~'/?(T'y))? is a prescribed load. The stress is computed
by the Hooke law

o(u) = MrViu + 2uVu,

where (A, p) are the Lamé coefficients. The following result is taken from [6].

Proposition 5.1. When J is defined by (5), the reduced cost j admits a topological derivative g(x)
at each point x € D$ given by

k+1 , (rf —1)(k —2) ,
=— |2 HAVAS —_— s
g(x) S E 1) o(uy)(z) : Viuy(x) + P = — tro(uq ) (z)trVov, (z)| + ¢,
where
A+ 3 +_ - oal
A + lj/ ) ’y_i_’ ’y_?



and the adjoint state v, € V solves

/ vyo(vy) 1 Vinde = — Y.nds Vn e V. (23)
D I'n

Henceforth we place ourselves in the plane stress case. Then the Lamé coefficients are related
to the Poisson ratio v by

v _ 1
F=sa1o)y
which entails
3V
S 14v
Obviously, Lemma 2.3, Proposition 3.1 and Corollary 3.3 straightforwardly extend to the linear
elasticity case for the gradient

K

9o,y =0 (7)o (ug,y) : Vg, + L.
In order to be able to match gs 5 and g, with the help of a scalar-valued interpolation function,

we restrict ourselves to the Poisson ratio v = 1/3, which is a rather standard value. In this case
we have k = 2, and the topological derivative admits the simpler expression
gy(z) = kEy(2)o(u,)(x) : Viuy(z) +€  VYa € Df,
with
L A S R
2yt +47 vt 4 2y~
By arguing as in Theorem 3.4, we obtain the following result.

Theorem 5.2. Set

0(y) = 29 + 3yt v+ 29"y (0 +97)
YV +27)2rF +97)
and suppose that v € € and [D\ D7 \ D¥| = 0. Then jo(v) = j(7), 9o, = g, and the conditions
(4) and (13) are equivalent.

; (24)

Remark 5.3. For y7 =1 and v~ — 0 we have
0(y) ~~°. (25)

Interestingly, this cubic power law penalization is the most frequently used within the SIMP model.

6. OPTIMIZATION ALGORITHM

In view of the preceding findings, we replace the solution of (1)-(2) by that of the interpolated

problem (7)-(8), that is

min jo (7).

ye€
The function 6 is chosen according to Theorems 3.4 (in conductivity) or 5.2 (in elasticity). Two
classes of methods are of common usage in topology optimization with material interpolation
schemes, for which we refer to [12]. On one hand the so-called optimality criteria methods are
efficient in some cases but they are quite heuristic. On the other hand convex approximations
methods, like the Method of Moving Asymptotes (MMA), consist in iteratively solving simpler
subproblems constructed so as to account for approximations of the objective and possible con-
straints, with the property of being separable in the elements. Here we simply use a projected
gradient algorithm.

Algorithm 1. (1) Initialization: choose B> 0, a € (0,1), vo € €.
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(2) Loop while ||yni1 — Y ll/ ||l < B:
Yn+1 = max(y ", min(y", yn — ta Vi (1)),

where t, = t2a™ and m is the smallest integer such that

Jo(ynt1) < Jo(yn)-

In the computations we have always used a = 0.5, v = (v~ +77)/2, and t9 = ||,/ Ve () |-
In this latter expression, as well as in the stopping criterion, the L? norm on D has been chosen.

For the discretization of the state equation we use finite elements with piecewise linear shape
functions on a triangular mesh. We denote by V}, the finite element space and by {e1,...,en} the
finite element basis. The density - is also represented on this basis, as

N
v= Z Vi€i,
i=1

and the vector (y1,...,7n) is the design variable. The equivalent density within each element is
computed by applying a linear interpolation operator S € L(Vy, Tr), where Ty, is the set of functions
defined on D which are constant per element. Then the discrete state ug , € V}, is computed by

/ 0(Sv)Vue, . Vndz :/ onds V1 € Vi,
D

I'n

and the discrete cost is defined by
jo(y) = Yug ds + E/ S~dzx.
T'n D
Arguing as in Proposition 3.1, we find that the derivative of the discrete cost is

Djo(y)d = / 10" (Sy)Vug,,.Vvg 4S8 + £S6]dz,
D

with the discrete adjoint state vg ~ solution of

/ 0(Sv)Vvg . Vnde = — Ynds Vn € V.

D I'n

Denoting by S* the adjoint operator of S with respect to the inner product of L?(D) we obtain
the gradient

Vig(y) = S* (HI(S’Y)VUGWVU@W +0).

Remark 6.1. Piecewise linear finite elements are seldom used in topology optimization because
they are known to produce instabilities in the form of checkerboard patterns [2, 12]. However in
all the numerical tests performed this phenomenon has not been encountered. Probably this is
due to the fact that the design variable is here defined at the nodes, whereas it is usually attached
to the elements. Hence, thanks to the possibility to use low order triangular finite elements, the
present algorithm proves to be of remarkably simple implementation and appropriate for arbitrary
domains.

In the following two sections we show some applications of this algorithm to conductivity and
linear elasticity academic problems. The main feature which stands out from those experiments
is that, at convergence, the intermediate densities are almost confined to the elements located at
the interface between the two extremal materials. Therefore, this region can be made arbitrarily
small by mesh refinement.
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Opu = —1

I

F1cUrE 2. Conductor: computational domain and boundary conditions.

F1aure 3. Conductor: optimal density for £ =1 (left), and ¢ = 10 (right).

7. NUMERICAL EXAMPLES IN CONDUCTIVITY

We use the parameters y© =1, v~ = 107> and 8 = 1072. In the example under consideration
the domain D is a square of size 1.5, with the boundary conditions indicated on Figure 2. In the
objective functional we take ¢ = ¢, hence the problem is self-adjoint, i.e., vg » = —ug . We use a

mesh containing N = 29041 nodes. Figures 3 shows the results of two computations, corresponding
to the Lagrange multipliers ¢ = 1 and ¢ = 10. The implementation is done in Matlab.

8. NUMERICAL EXAMPLES IN ELASTICITY

For structural optimization problems, in order to reduce the risk to fall in local minima and
save computer time, we use a sequence of iteratively refined meshes, like in [8]. The optimization is
first performed on a coarse mesh. After convergence, the mesh is refined, the density ~ is projected
onto the new mesh, and the optimization is continued. This procedure is repeated up to the final
desired mesh. We present three examples.

8.1. Cantilever. Here and in the subsequent section 8.2 we use y* =1, v~ = 107% and g = 1073,
Again we place ourselves in the self-adjoint case (¢ = ¢), which corresponds to the standard
compliance minimization problem. The domain D is a rectangle of size 2 x 1 (see Figure 4, left).
The Lagrange multiplier is chosen as ¢ = 100. The successive meshes consist of 431, 1661, 6521
and 25841 nodes. The obtained distribution of material is depicted on Figure 4, right.

8.2. Mast. The domain D is shown on Figure 5, left, where the vertical and horizontal branches
are rectangles of sizes 2 x 4 and 4 x 2, respectively. The Lagrange multiplier is chosen as ¢ = 50.
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/

FIGURE 4. Cantilever: boundary conditions (left) and optimal density (right)

FIGURE 5. Mast: boundary conditions (left) and optimal density (right)

(

FIGURE 6. Gripping mechanism: boundary conditions (left) and optimal density (right)

The successive meshes consist of 851, 3301 and 13001 nodes. The obtained solution is depicted on
Figure 5, right.

8.3. Gripping mechanism. We consider a simplified model of gripping mechanism. The loaded
part of the boundary is split into I'p = I'p; U I'pa, see Figure 6, left. The functions ¢ and 1 are
defined as

© = P1XTr; T P2XTra; P = 1/}1XFF1 + 1/)2XFF2,

with ¢1 = 1, p2 = 10, ¢y1 = 1, v = 0. The Lagrange multiplier is chosen as ¢ = 0.3. We use
the parameters v+ = 1, v~ = 1072, 3 = 10~2, and successive meshes containing 3467, 13693 and
54425 nodes. The obtained solution is depicted on Figure 6, right.
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APPENDIX A. MATHEMATICAL COMPLEMENTS
The goal of this appendix is to prove Theorem 4.2. We begin by two preliminary lemmas.
Lemma A.1. Let S be the set of polarization matrices generated by arbitrary ellipses, i.e,
S={RQ,.R",RclUd,0<e<1}.
Then S is the set of all 2 x 2 symmetric positive definite matrices P verifying

1
trace (P~Y) =1+, trace (P) <1+ —. (26)
r

Proof. If P € S, one easily checks (26). Suppose that P satisfies (26) and denote by Ai, A the
eigenvalues of P, which satisfy

1 1 1
—+—=1 AL+ A 1+ -. 27
)\1+)\2 +, 1+ <14 (27)
We deduce from (27) that
1
A
1>1+r5
1 1 (177’)\1)(17)\1)
M+X—(14+-)=14+- 0
LA <+r> <+r> (14+rA -1 <5

which entails

(1 — )\1)(7“)\1 — 1) > 0.
Hence é := (1 —X1)/(rA\1 —1) > 0. If é < 1, we set e = ¢, so that \y = (1 +e¢)/(1 +re) and, using
(27), a=(1+e)/(e+r). Ifé > 1, we set e =1/¢, so that \y = (1 +¢e)/(e + r) and, using (27),
X2 = (1+e€)/(1+re). In both cases P has the same eigenvalues as Q. ., thus there exists R € U
such that P = RQMRT. O

Lemma A.2. The closure of S is the set of all symmetric positive definite matrices P verifying
1
trace (P~1) =1+, trace (P) <1+ —. (28)
r

Proof. Clearly, (28) is fulfilled by all P belonging to the closure of S, denoted by cl(S). In addition,
every eigenvalue \ of a matrix P € S satisfies A > 1/(1 + r). Hence each P € cl(S) is symmetric
positive definite. Suppose now that P is a symmetric positive definite matrix verifying

1
trace (P~ =147, trace (P) =1+ —. (29)
r

Using (29) we obtain that the eigenvalues of P are 1 and 1/r. Therefore there exists R € U such

that
_p(1 O T
P_R(O l/r)R .

Let (a,) be a sequence of positive numbers such that

Q> Vn € N, lim a, —1,
1 +7r n—o00
and define o
= . n > 07
& an(l+7r)—1
_ Qp 0 T
P,=R < 0 5n> R".
By construction, we have for all n
1 1

—+——=1+r
an  Bn
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iz (15) = (143) ST

We choose (a,,) such that

ap <1 if r>1,

ap, >1 if r<1.
In each case, for n large enough, a, < 0, hence P, € S. As lim,,_ o, P, = P, we conclude that
P e cl(S). O

We are now in position to prove Theorem 4.2. First, we easily check that, in the nontrivial case
where U,V # 0, AT and A~ given by (20) are eigenvalues of M associated with the eigenvectors
U/|U| + V/|V| and U/|U| — V/|V|, respectively. Suppose that v € £ is a local minimizer of j
with respect to every elliptic inclusion, and choose x € DJ. According to Lemma 2.3, we have
gvy.w(x) > 0 for any ellipse w. Then the condition (22)(a) will be fulfilled if we set

g5(x) = inf{gy (), w ellipse}.

We now check that the above infimum satisfies (21)(a). For each ellipse w, we write (18) in the
form

Gyw(®) =Py M(x)+ L.
With the notation of Lemma A.1, we have
g5(x) =inf{P: M+ ¢, P €S}
As S is bounded, we also have
g5 () =min{P: M + ¢, P € cl(S)}.
Let us consider an arbitrary P € cl(S), which we write in the form

AT 0

_ P T D _
P = RPRT, P—(O -

>, Rel, AT > A" >0.

Likewise, there exists S € U such that
. . +
M = SMST, M = (Ao AO) .
Set T'= STR. As T € U, there exists ¢ € R such that
cos¢ —sing cos¢ sin¢
- (sin(b cos ¢ ) or T'= (singb cosgb) '
We arrive in both cases at
P:M=(TPTT): M=t =A") (AT —A7)cos? o+ ATA™ + A"AT. (30)
Arguing as in Lemma A.1 with the characterization of cl(S) given by Lemma A.2, we obtain that
(1 =25 (At -1)>0.
Since x € D7, we haver = %/~ > 1, hence the above inequality implies that 1/7 <A™ < AT < 1.
Using that A~ <0 < AT we derive
P:M> AT—JF + A",
In addition, this bound is attained for cos¢ = 0, AT = 1, A~ = 1/r, which provides (21)(a). The
case where = € D,}L can be treated in a similar way, with inf replaced by sup and r = v~ /T < 1.
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