
CONNECTIONS BETWEEN TOPOLOGICAL SENSITIVITY ANALYSIS ANDMATERIAL INTERPOLATION SCHEMES IN TOPOLOGY OPTIMIZATIONSAMUEL AMSTUTZAbstra
t. Material interpolation s
hemes, like SIMP, are very popular in topology optimiza-tion. They 
onvert the di�
ult 0-1 problem into a nonlinear programming problem de�nedover a 
onvex set by involving an interpolation (or penalization) fun
tion, usually 
onstru
tedin rather empiri
al ways. This paper gives an insight into su
h methods with the help of thenotion of topologi
al sensitivity, and in parti
ular provides some arguments for the 
hoi
e of thepenalization fun
tion. A simple algorithm based on these 
on
epts is proposed and illustratedby numeri
al experiments. 1. Introdu
tionLet D be a bounded domain of Rd, d = 2 or 3, with a Lips
hitz boundary Γ made of two disjointparts ΓD and ΓN , with ΓD of nonzero measure and ΓN of 
lass C1. We fo
us on the followingminimization problem, with the notation spe
i�ed below:
min

(γ,u)∈E×V
J(γ, u) (1)subje
t to ∫

D

γ∇u.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ V . (2)The symbol ∇ stands for the gradient operator, and the dot notation is used for the 
anoni
als
alar produ
t of Rd. For the two unknowns γ and u the feasible sets are respe
tively
E := {γ : D → {γ−, γ+}, γ measurable},

V := {u ∈ H1(D), u|ΓD=0}.The 
onstants γ+ > γ− > 0, the distribution ϕ ∈ H−1/2(ΓN ), and the fun
tional J : E × V → Rare given data. For 
onvenien
e we denote by j(γ) := J(γ, uγ) the redu
ed 
ost, or obje
tive, with
uγ the solution of (2). Subsequently γ and uγ will be referred to as the density (or 
ondu
tivity)and the state, respe
tively. Note that, in many appli
ations, the weak phase approximates anempty region, whi
h means that γ− ≪ γ+.Due to the �bang-bang� nature of the targeted density γ, Problem (1)-(2) falls into the frameworkof topology optimization. A number of methods have been devised for its solution, whi
h we brie�yre
all. A �rst 
lass of methods, sometimes known as 
lassi
al shape optimization [19, 27℄, relieson the 
ontrol of the interfa
e Γγ where γ jumps. The sensitivity analysis of the obje
tive withrespe
t to the position of Γγ leads to the notion of shape derivative. Algorithms based on the shapederivative produ
e in prin
iple smooth variations of Γγ , in parti
ular, the number of its 
onne
ted
omponents 
annot 
hange. This is a serious drawba
k in many appli
ations. An importantex
eption must nevertheless be mentioned. It 
on
erns level set methods [4, 22, 23℄, where Γγ isrepresented as the zero level set of a smooth fun
tion ψ de�ned overD. A Hamilton-Ja
obi equationis then often used to move the interfa
e in the desired dire
tion. Within this setting, 
onne
tedKey words and phrases. topology optimization, material interpolation, SIMP, topologi
al sensitivity, topologi
alderivative. 1
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omponents 
an 
an
el or merge, but 
an hardly be 
reated, at least in two dimensions. In fa
t,these methods la
k a nu
leation me
hanism. The topologi
al sensitivity analysis aims pre
isely atevaluating the variation of the obje
tive when γ is swit
hed within a small region. This 
on
epthas been introdu
ed in [15℄, mathemati
ally justi�ed in [16, 26℄, and then developed by severalauthors, see, e.g., [6, 7, 17, 20, 21℄. Therefore, the topologi
al sensitivity may be advantageously
ombined with level set methods [3, 8, 13℄. A basi
ally di�erent 
lass of methods 
onsists in relaxingthe 
onstraint γ(x) ∈ {γ−, γ+}. This is usually a
hieved by invoking the homogenization theory[1, 10℄. This latter approa
h bene�ts from ni
e theoreti
al properties, like di�erentiability andexisten
e of global minimizers. However, eventually retrieving a feasible solution requires a ratherheuristi
 penalization post-pro
essing. Simpli�ed methods, 
alled material interpolation s
hemesor methods of �
titious materials [9, 11, 12, 25℄, are very popular in the engineering 
ommunity.They are based on the two following prin
iples. Firstly, the set of admissible values {γ−, γ+} issimply extended to its 
onvex hull [γ−, γ+], thus the whole theory of homogenization is not needed.Se
ondly, the penalization is dire
tly in
luded in the optimization pro
ess by a modi�
ation of thestate equation. Typi
ally, in the SIMP model (Solid Isotropi
 Material with Penalization), thedensity γ in (2) is repla
ed by a power law θ(γ) = γp whi
h, for some obje
tive fun
tions, tendsto enfor
e extremal values. This formulation has proven parti
ularly simple and e�
ient in manyimportant 
ases. However, it has no proper theoreti
al justi�
ation, and the 
hoi
e of the exponent
p is mainly empiri
al.The purpose of this paper is to give an insight into material interpolation s
hemes by interpretingthe asso
iated �rst order ne
essary optimality 
onditions in terms of topologi
al sensitivity. Weshow that spe
ial penalization fun
tions θ 
an be related to isotropi
 topologi
al perturbations,whi
h provides a 
lear meaning to the solutions obtained through this model. The power lawpenalization is retrieved in parti
ular 
ases.The paper is organized as follows. The notion of topologi
al sensitivity is re
alled in Se
tion 2.The aforementioned relations between material interpolation s
hemes and topologi
al sensitivityare exhibited in Se
tion 3. The 
ase of anisotropi
 perturbations is dis
ussed in Se
tion 4, 
omple-mented by Appendix A. The extension to the linear elasti
ity setting is addressed in Se
tion 5. Agradient-like algorithm based on these 
on
epts is des
ribed in Se
tion 6. Numeri
al experimentsare reported in Se
tions 7 and 8.2. Topologi
al sensitivity and optimality 
onditionsIn the sequel we shall use the following standard notation. The dot produ
t of two ve
tors
x, y ∈ R

d is denoted, as in the introdu
tion, by x.y, while the Eu
lidean norm of x is denoted by
|x|. The open ball of 
enter x̂ ∈ R

d and radius ρ > 0 is denoted by B(x̂, ρ) := {x ∈ R
d, |x− x̂| < ρ}.If A is a subset of Rd, |A| stands for the d-dimensional Lebesgue measure of A. In addition, χAstands for the 
hara
teristi
 fun
tion of A, i.e., χA(x) = 1 if x ∈ A, χA(x) = 0 if x /∈ A. Theinterior of A is denoted by intA, i.e., intA := {x ∈ A s.t. ∃ρ > 0, B(x, ρ) ⊂ A}. For any γ ∈ E wede�ne the sets

[γ = γ+] := {x ∈ D, γ(x) = γ+}, [γ = γ−] := {x ∈ D, γ(x) = γ−},

D+
γ := int[γ = γ+], D−

γ := int[γ = γ−].We also de�ne the fun
tion sγ : D+
γ ∪D−

γ → R by
sγ(x) =

{

1 if x ∈ D−
γ ,

−1 if x ∈ D+
γ .Below we de�ne a notion of lo
al optimality relative to a parti
ular 
lass of perturbations. Moregeneral perturbations are 
onsidered in Se
tion 4.



3De�nition 2.1. We say that γ ∈ E is a lo
al minimizer of j if, for every family (x1, ..., xN ) ∈
(D+

γ ∪D−
γ )

N , N ∈ N \ {0}, there exists ρ̄ > 0 su
h that, for all (ρ1, ..., ρN ) ∈ R
N
+ ,

max
i=1,...,N

ρi < ρ̄ =⇒ j

(

γ + (γ+ − γ−)

N
∑

i=1

sγ(xi)χB(xi,ρi)

)

≥ j(γ).In other words, the domain [γ = γ+] is said to be lo
ally optimal if j(γ) 
annot be de
reased bythe 
reation of an arbitrary set of small spheri
al in
lusions. The 
on
ept of topologi
al derivativegives a quantitative information on the variation of j(γ) with respe
t to su
h perturbations.De�nition 2.2. We say that the fun
tional j admits a topologi
al derivative g(x̂) at the point
x̂ ∈ D+

γ ∪D−
γ if the following asymptoti
 expansion holds when ρ→ 0:

j(γ + sγ(x̂)(γ
+ − γ−)χB(x̂,ρ))− j(γ) = sγ(x̂)(γ

+ − γ−)|B(x̂, ρ)|gγ(x̂) + o(|B(x̂, ρ)|), (3)with limρ→0
o(|B(x̂,ρ)|)
|B(x̂,ρ)| = 0.As a straightforward 
onsequen
e of De�nitions 2.2 and 2.1 we derive the following result.Lemma 2.3. Suppose that γ is a lo
al minimizer of j and j admits a topologi
al derivative gγ(x)at all point x ∈ D+

γ ∪D−
γ . Then

gγ(x) ≥ 0 ∀x ∈ D−
γ ,

gγ(x) ≤ 0 ∀x ∈ D+
γ .

(4)Proof. We 
hoose a single perturbation 
entered at a point x̂, for instan
e x̂ ∈ D−
γ . By De�nition2.2 we have

j(γ + (γ+ − γ−)χB(x̂,ρ))− j(γ) = (γ+ − γ−)|B(x̂, ρ)|gγ(x̂) + o(|B(x̂, ρ)|).In view of De�nition 2.1 this quantity is nonnegative as soon as ρ is su�
iently small. Dividing by
|B(x̂, ρ)| and passing to the limit as ρ→ 0 entails gγ(x̂) ≥ 0. Likewise gγ(x̂) ≤ 0 when x̂ ∈ D+

γ . �To �x ideas, we assume hen
eforth that the obje
tive fun
tional is of the form
J(γ, u) =

∫

ΓN

ψuds+ ℓ

∫

D

γdx, (5)with ψ ∈ H−1/2(ΓN ). The s
alar 
onstant ℓ 
an be seen as a Lagrange multiplier asso
iated witha volume 
onstraint. The following result is proven in [6℄.Proposition 2.4. When J is de�ned by (5), the redu
ed 
ost j admits a topologi
al derivative
gγ(x) at ea
h point x ∈ D±

γ given by
gγ(x) = k±γ(x)∇uγ(x).∇vγ(x) + ℓ,where the adjoint state vγ ∈ V solves

∫

D

γ∇vγ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V , (6)and the expression of k± is reported in Table 1.



4d 2 3
k−

2

γ+ + γ−
3

γ+ + 2γ−

k+
2

γ+ + γ−
3

2γ+ + γ−Table 1. Expressions of k± for the 
ondu
tivity problem.3. Conne
tion with material interpolation s
hemesWe now 
onsider the auxiliary problem
min

(γ,u)∈Ẽ×V
J(γ, u) (7)subje
t to ∫

D

θ(γ)∇u.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ V . (8)Compared with (1)-(2), γ is sought in the 
onvex set
Ẽ := {γ : D → [γ−, γ+], γ measurable},and the state equation is modi�ed by the introdu
tion of a smooth (at least C1) fun
tion θ :

(γ−−, γ++) → (γ−−, γ++), with 0 < γ−− < γ− < γ+ < γ++. We assume further that θ isin
reasing and satis�es
θ(γ−) = γ−, θ(γ+) = γ+.For this problem we denote by jθ(γ) := J(γ, uθ,γ) the redu
ed 
ost, with uθ,γ the solution of (8).We will afterwards use standard notions of di�erential 
al
ulus in Bana
h spa
es. The readerwho is not familiar with this �eld may refer, e.g., to [14, 18℄. More spe
i�
ally, the followingproposition is a dire
t appli
ation of the adjoint method for the 
al
ulus of derivatives (see, e.g.,[2, 18℄).Proposition 3.1. The redu
ed 
ost jθ is Fré
het di�erentiable on L∞(D, (γ−−, γ++)) with thederivative in the dire
tion δ ∈ L∞(D) given by

Djθ(γ)δ =

∫

D

gθ,γδdx, (9)with
gθ,γ := θ′(γ)∇uθ,γ .∇vθ,γ + ℓ,and the adjoint state vθ,γ ∈ V solution of

∫

D

θ(γ)∇vθ,γ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V . (10)Proof. First, it stems from the impli
it fun
tion theorem that the mapping S : γ ∈ L∞(D, (γ−−, γ++)) 7→
uθ,γ ∈ V is Fré
het di�erentiable. We write for simpli
ity u̇θ,γ := DS(uθ,γ)δ the derivative in thedire
tion δ ∈ L∞(D). Then jθ is di�erentiable by 
omposition, and the 
hain rule yields

Djθ(γ)δ =

∫

ΓN

ψu̇θ,γds+ ℓ

∫

D

δdx.On using the adjoint equation (10) to rewrite the �rst integral we obtain
Djθ(γ)δ = −

∫

D

θ(γ)∇vθ,γ .∇u̇θ,γdx+ ℓ

∫

D

δdx. (11)



5Now di�erentiating (8) yields
∫

D

[θ′(γ)δ∇uθ,γ.∇η + θ(γ)∇u̇θ,γ .∇η]dx = 0 ∀η ∈ V . (12)Combining (11) and (12) provides (9). �For the optimality of jθ we use the standard de�nition re
alled below. For simpli
ity we denoteby ‖.‖ the L∞ norm on D, i.e., ‖γ‖ = inf{c, |γ| ≤ c a.e. in D}.De�nition 3.2. We say that γ ∈ Ẽ is a lo
al minimizer of jθ if there exists α > 0 su
h that
∀γ̃ ∈ Ẽ , ‖γ − γ̃‖ ≤ α ⇒ jθ(γ) ≤ jθ(γ̃).From Proposition 3.1 we derive the following ne
essary optimality 
onditions.Corollary 3.3. Suppose that γ is a lo
al minimizer of jθ. Then

gθ,γ ≥ 0 a.e. on [γ = γ−],
gθ,γ = 0 a.e. on [γ− < γ < γ+],
gθ,γ ≤ 0 a.e. on [γ = γ+].

(13)Proof. By virtue of the 
onvexity of Ẽ we have the optimality 
ondition (see, e.g., [18℄)
Djθ(γ)(γ̃ − γ) ≥ 0 ∀γ̃ ∈ Ẽ .Consider an arbitrary pair (λ, δ) ∈ (γ−, γ+)× L∞(D) with δ ≥ 0 a.e., and set

γ̃ = γ + χ[γ≤λ]tδ.For t > 0 su�
iently small we have γ̃ ∈ Ẽ , hen
e
Djθ(γ)(γ̃ − γ) = t

∫

[γ≤λ]

gθ,γδdx ≥ 0.It follows that
∫

[γ≤λ]

gθ,γδdx ≥ 0 ∀δ ∈ L∞(D), δ ≥ 0,and subsequently that
gθ,γ ≥ 0 a.e. on [γ ≤ λ].Similarly we �nd that
gθ,γ ≤ 0 a.e. on [γ ≥ λ].Using that λ ∈ (γ−, γ+) is arbitrary 
ompletes the proof. �From 
omparison of Lemma 2.3 and Corollary 3.3, it appears that, apart from the 
onvexi�
ationof the feasible set, the two optimality systems essentially di�er by the expression of the sensitivities.Then a natural question arises: is there a fun
tion θ su
h that those two sensitivities 
oin
ide?This question is addressed by the following theorem.Theorem 3.4. There exists a unique polynomial fun
tion γ 7→ θ(γ) of degree not larger than 3su
h that θ(γ(x)) = γ(x) and gθ,γ(x) = gγ(x) for all γ ∈ E and all x ∈ D−

γ ∪D+
γ . This fun
tion isgiven by

θ(γ) =
γ2 + γ+γ−

γ+ + γ−
if d = 2,

θ(γ) =
−γ3 + 3(γ+ + γ−)γ2 + 2γ+γ−(γ+ + γ−)

(2γ+ + γ−)(γ+ + 2γ−)
if d = 3.

(14)If θ is 
hosen as above, γ ∈ E and |D \D−
γ \D+

γ | = 0, then jθ(γ) = j(γ) and the 
onditions (4)and (13) are equivalent.



6Proof. In order to ful�ll the assertions of the theorem we need to 
onstru
t a smooth fun
tion θsu
h that
θ(γ−) = γ−, θ(γ+) = γ+, θ′(γ−) = k−γ−, θ′(γ+) = k+γ+. (15)For a polynomial interpolation of the form

θ(γ) = a3γ
3 + a2γ

2 + a1γ + a0,the 
onditions (15) are equivalent to














a3(γ
−)3 + a2(γ

−)2 + a1γ
− + a0 = γ−,

a3(γ
+)3 + a2(γ

+)2 + a1γ
+ + a0 = γ+,

3a3(γ
−)2 + 2a2γ

− + a1 = k−γ−,
3a3(γ

+)2 + 2a2γ
+ + a1 = k+γ+.

(16)By Gauss elimination, we �nd that the above system admits a unique solution given by
a3 =

k+γ+ + k−γ− − 2

(γ+ − γ−)2
,

a2 =
(1− k+γ+)(γ+ + 2γ−) + (1− k−γ−)(2γ+ + γ−)

(γ+ − γ−)2
,

a1 = 1−
(1− k+γ+)γ−(2γ+ + γ−) + (1 − k−γ−)γ+(γ+ + 2γ−)

(γ+ − γ−)2
,

a0 =
γ+γ−

(γ+ − γ−)2
[

(1 − k+γ+)γ− + (1− k−γ−)γ+
]

.Now using the expressions of k+ and k− from Table 1 results in (14). �Remark 3.5. For γ+ = 1 and γ− → 0 we have
θ(γ) ∼ γ2 if d = 2,

θ(γ) ∼ −
1

2
γ3 +

3

2
γ2 if d = 3.

(17)These fun
tions are plotted in Figure 1.Remark 3.6. By virtue of the relations
|D \D−

γ \D+
γ | = |[γ = γ+] \ int[γ = γ+]|+ |[γ = γ−] \ int[γ = γ−]|

≤ |∂[γ = γ+]|+ |∂[γ = γ−]|,the 
ondition |D \ D−
γ \ D+

γ | = 0 will be ful�lled as soon as the sets ∂[γ = γ+] and ∂[γ = γ−]have zero d-dimensional Lebesgue measure. This will hold true whenever those sets have somesmoothness, for instan
e, when they are Lips
hitz.Remark 3.7. Of 
ourse, Theorem 3.4 does not imply that Problems (1)-(2) and (7)-(8) are equiv-alent sin
e there is no guarantee that the solutions (global or lo
al) to (7)-(8) belong to E . Wemention in this respe
t the paper [24℄, where it is proven that, for θ(γ) = γp, in the self-adjoint
ase and for a dis
rete version, solutions to (7)-(8) are ne
essarily in E for p su�
iently high.4. On optimality with respe
t to ellipti
 perturbationsThis se
tion deals with the extension of the previous 
on
epts of topologi
al sensitivity analysisand related optimality 
onditions to non spheri
al in
lusions. This means that, in the asymptoti
expansion (3), B(x̂, ρ) is repla
ed by
ω(x̂, ρ) := x̂+ ρω,
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Figure 1. Fun
tion θ for γ+ = 1 and γ− → 0, from top to bottom: 
ondu
tivity3D, 
ondu
tivity 2D, linear elasti
ity 2D.where ω is an arbitrary referen
e domain. When it exists, the asso
iated topologi
al derivative isdenoted by gγ,ω. The following result is proven in [6℄.Proposition 4.1. When J is de�ned by (5), the redu
ed 
ost j admits a topologi
al derivative
gγ,ω(x) at ea
h point x ∈ D±

γ given by
gγ,ω(x) = Pω,r∇uγ(x).∇vγ(x) + ℓ, (18)where the adjoint state vγ ∈ V solves

∫

D

γ∇vγ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V . (19)The polarization matrix Pω,r is always symmetri
 and depends only on ω and the density 
ontrast
r, i.e., r = γ+/γ− if x ∈ D−

γ , r = γ−/γ+ if x ∈ D+
γ . If ω is the ellipse with semi major andminor axes of length 1 and e, respe
tively, dire
ted along the main axes of the 
oordinate system,then the polarization matrix admits the expression

Pω,r = Qr,e :=







1 + e

1 + re
0

0
1 + e

e+ r






.Detailed properties of polarization matri
es 
an be found in [5℄. In parti
ular, if ω′ = Rω where

R belongs to the set U of unitary transformations of R2, then the asso
iated polarization matrixbe
omes
Pω′,r = RPω,rR

T .The following theorem states topologi
al optimality 
onditions with respe
t to the 
lass of allellipti
 in
lusions. The proof, whi
h is fairly te
hni
al, is deferred to Appendix A.Theorem 4.2. Set U = ∇uγ, V = ∇vγ , M = (U ⊗ V + V ⊗U)/2, and denote by Λ+ and Λ− thelargest and smallest eigenvalues of M , respe
tively, i.e.,
Λ+ =

U.V + |U ||V |

2
, Λ− =

U.V − |U ||V |

2
. (20)De�ne

g⋆γ =















γ−

γ+
Λ+ + Λ− + ℓ in D−

γ , (a)

γ+

γ−
Λ+ + Λ− + ℓ in D+

γ . (b)
(21)



8A ne
essary optimality 
ondition for γ ∈ E to be a lo
al minimizer of j with respe
t to arbitraryellipti
 in
lusions is
g⋆γ(x) ≥ 0 ∀x ∈ D−

γ , (a)
g⋆γ(x) ≤ 0 ∀x ∈ D+

γ . (b)
(22)Let us now give some pra
ti
al impli
ations of Theorem 4.2.(1) In the self-adjoint 
ase vγ = −uγ (i.e., ψ = ϕ) we derive

g⋆γ = −|∇uγ |
2 + ℓ in D−

γ ∪D+
γ .Then solving the optimality 
onditions (22) amounts to �nding a solution (γ, u) ∈ E × Vof (7)-(8) with the interpolation fun
tion θ(γ) = γ (see Proposition 3.1 and Corollary3.3). It is well known (see, e.g., [2℄) that this problem admits solutions in Ẽ × V , but the
orresponding γ is usually not of bang-bang type. This suggests that (22) has few 
han
esto admit a solution in E .(2) Consider now a non self-adjoint 
ase and a point x ∈ D+

γ where ∇uγ(x) 6= −∇vγ(x).Hen
e Λ+(x) > 0, and (22)(b) reads
γ+

γ−
Λ+(x) + Λ−(x) + ℓ ≤ 0.When γ− ≪ γ+, the above 
ondition is hardly ful�lled, whi
h again suggests the absen
eof lo
al minimizer relative to ellipti
 in
lusions.We therefore 
on
lude that imposing optimality with respe
t to the 
lass of all ellipti
 in
lusionsis generally too strong to allow for the existen
e of solutions in E . This implies that interpolationmethods attempting to solve these 
onditions are likely to generate regions of intermediate density,whi
h are usually undesirable due to their un
lear me
hani
al interpretation [2, 11℄. A

ordingly,we subsequently limit ourselves to spheri
al in
lusions.5. Generalization to linear elasti
ityWe 
onsider now a linear elasti
ity problem in two spa
e dimensions. The domain D is de�nedas before. The state is the displa
ement �eld

u ∈ V := {u ∈ (H1(D))2, u|ΓD=0},and the equilibrium equation reads
∫

D

γσ(u) : ∇sη =

∫

ΓN

ϕ.ηds ∀η ∈ V .Here σ(u) is the stress normalized to a unitary Young modulus, ∇sη := (∇η + ∇T η)/2 is thesymmetri
 gradient (strain), and ϕ ∈ (H−1/2(ΓN ))2 is a pres
ribed load. The stress is 
omputedby the Hooke law
σ(u) = λtr∇su+ 2µ∇su,where (λ, µ) are the Lamé 
oe�
ients. The following result is taken from [6℄.Proposition 5.1. When J is de�ned by (5), the redu
ed 
ost j admits a topologi
al derivative g(x)at ea
h point x ∈ D±

γ given by
gγ(x) =

κ+ 1

2(κr± + 1)

[

2σ(uγ)(x) : ∇
svγ(x) +

(r± − 1)(κ− 2)

κ+ 2r± − 1
trσ(uγ)(x)tr∇svγ(x)

]

+ ℓ,where
κ =

λ+ 3µ

λ+ µ
, r+ =

γ−

γ+
, r− =

γ+

γ−
,



9and the adjoint state vγ ∈ V solves
∫

D

γσ(vγ) : ∇
sηdx = −

∫

ΓN

ψ.ηds ∀η ∈ V . (23)Hen
eforth we pla
e ourselves in the plane stress 
ase. Then the Lamé 
oe�
ients are relatedto the Poisson ratio ν by
λ =

ν

1− ν2
, µ =

1

2(1 + ν)
,whi
h entails

κ =
3− ν

1 + ν
.Obviously, Lemma 2.3, Proposition 3.1 and Corollary 3.3 straightforwardly extend to the linearelasti
ity 
ase for the gradient

gθ,γ = θ′(γ)σ(uθ,γ) : ∇
svθ,γ + ℓ.In order to be able to mat
h gθ,γ and gγ with the help of a s
alar-valued interpolation fun
tion,we restri
t ourselves to the Poisson ratio ν = 1/3, whi
h is a rather standard value. In this 
asewe have κ = 2, and the topologi
al derivative admits the simpler expression

gγ(x) = k±γ(x)σ(uγ)(x) : ∇
svγ(x) + ℓ ∀x ∈ D±

γ ,with
k− =

3

2γ+ + γ−
, k+ =

3

γ+ + 2γ−
.By arguing as in Theorem 3.4, we obtain the following result.Theorem 5.2. Set

θ(γ) =
2γ3 + 3γ+γ−γ + 2γ+γ−(γ+ + γ−)

(γ+ + 2γ−)(2γ+ + γ−)
, (24)and suppose that γ ∈ E and |D \D−

γ \D+
γ | = 0. Then jθ(γ) = j(γ), gθ,γ = gγ, and the 
onditions(4) and (13) are equivalent.Remark 5.3. For γ+ = 1 and γ− → 0 we have

θ(γ) ∼ γ3. (25)Interestingly, this 
ubi
 power law penalization is the most frequently used within the SIMP model.6. Optimization algorithmIn view of the pre
eding �ndings, we repla
e the solution of (1)-(2) by that of the interpolatedproblem (7)-(8), that is
min
γ∈Ẽ

jθ(γ).The fun
tion θ is 
hosen a

ording to Theorems 3.4 (in 
ondu
tivity) or 5.2 (in elasti
ity). Two
lasses of methods are of 
ommon usage in topology optimization with material interpolations
hemes, for whi
h we refer to [12℄. On one hand the so-
alled optimality 
riteria methods aree�
ient in some 
ases but they are quite heuristi
. On the other hand 
onvex approximationsmethods, like the Method of Moving Asymptotes (MMA), 
onsist in iteratively solving simplersubproblems 
onstru
ted so as to a

ount for approximations of the obje
tive and possible 
on-straints, with the property of being separable in the elements. Here we simply use a proje
tedgradient algorithm.Algorithm 1. (1) Initialization: 
hoose β > 0, α ∈ (0, 1), γ0 ∈ Ẽ.



10(2) Loop while ‖γn+1 − γn‖/‖γn‖ ≤ β:
γn+1 = max(γ−,min(γ+, γn − tn∇jθ(γn))),where tn = t0nα

m and m is the smallest integer su
h that
jθ(γn+1) < jθ(γn).In the 
omputations we have always used α = 0.5, γ0 ≡ (γ−+γ+)/2, and t0n = ‖γn‖/‖∇jθ(γn)‖.In this latter expression, as well as in the stopping 
riterion, the L2 norm on D has been 
hosen.For the dis
retization of the state equation we use �nite elements with pie
ewise linear shapefun
tions on a triangular mesh. We denote by Vh the �nite element spa
e and by {e1, ..., eN} the�nite element basis. The density γ is also represented on this basis, as
γ =

N
∑

i=1

γiei,and the ve
tor (γ1, ..., γN ) is the design variable. The equivalent density within ea
h element is
omputed by applying a linear interpolation operator S ∈ L(Vh, Th), where Th is the set of fun
tionsde�ned on D whi
h are 
onstant per element. Then the dis
rete state uθ,γ ∈ Vh is 
omputed by
∫

D

θ(Sγ)∇uθ,γ.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ Vh,and the dis
rete 
ost is de�ned by
jθ(γ) =

∫

ΓN

ψuθ,γds+ ℓ

∫

D

Sγdx.Arguing as in Proposition 3.1, we �nd that the derivative of the dis
rete 
ost is
Djθ(γ)δ =

∫

D

[θ′(Sγ)∇uθ,γ.∇vθ,γSδ + ℓSδ]dx,with the dis
rete adjoint state vθ,γ solution of
∫

D

θ(Sγ)∇vθ,γ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ Vh.Denoting by S⋆ the adjoint operator of S with respe
t to the inner produ
t of L2(D) we obtainthe gradient
∇jθ(γ) = S⋆ (θ′(Sγ)∇uθ,γ.∇vθ,γ + ℓ) .Remark 6.1. Pie
ewise linear �nite elements are seldom used in topology optimization be
ausethey are known to produ
e instabilities in the form of 
he
kerboard patterns [2, 12℄. However inall the numeri
al tests performed this phenomenon has not been en
ountered. Probably this isdue to the fa
t that the design variable is here de�ned at the nodes, whereas it is usually atta
hedto the elements. Hen
e, thanks to the possibility to use low order triangular �nite elements, thepresent algorithm proves to be of remarkably simple implementation and appropriate for arbitrarydomains.In the following two se
tions we show some appli
ations of this algorithm to 
ondu
tivity andlinear elasti
ity a
ademi
 problems. The main feature whi
h stands out from those experimentsis that, at 
onvergen
e, the intermediate densities are almost 
on�ned to the elements lo
ated atthe interfa
e between the two extremal materials. Therefore, this region 
an be made arbitrarilysmall by mesh re�nement.
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∂nu = −1

u = 0

Figure 2. Condu
tor: 
omputational domain and boundary 
onditions.

Figure 3. Condu
tor: optimal density for ℓ = 1 (left), and ℓ = 10 (right).7. Numeri
al examples in 
ondu
tivityWe use the parameters γ+ = 1, γ− = 10−5 and β = 10−2. In the example under 
onsiderationthe domain D is a square of size 1.5, with the boundary 
onditions indi
ated on Figure 2. In theobje
tive fun
tional we take ψ = ϕ, hen
e the problem is self-adjoint, i.e., vθ,γ = −uθ,γ. We use amesh 
ontaining N = 29041 nodes. Figures 3 shows the results of two 
omputations, 
orrespondingto the Lagrange multipliers ℓ = 1 and ℓ = 10. The implementation is done in Matlab.8. Numeri
al examples in elasti
ityFor stru
tural optimization problems, in order to redu
e the risk to fall in lo
al minima andsave 
omputer time, we use a sequen
e of iteratively re�ned meshes, like in [8℄. The optimization is�rst performed on a 
oarse mesh. After 
onvergen
e, the mesh is re�ned, the density γ is proje
tedonto the new mesh, and the optimization is 
ontinued. This pro
edure is repeated up to the �naldesired mesh. We present three examples.8.1. Cantilever. Here and in the subsequent se
tion 8.2 we use γ+ = 1, γ− = 10−5 and β = 10−3.Again we pla
e ourselves in the self-adjoint 
ase (ψ = ϕ), whi
h 
orresponds to the standard
omplian
e minimization problem. The domain D is a re
tangle of size 2 × 1 (see Figure 4, left).The Lagrange multiplier is 
hosen as ℓ = 100. The su

essive meshes 
onsist of 431, 1661, 6521and 25841 nodes. The obtained distribution of material is depi
ted on Figure 4, right.8.2. Mast. The domain D is shown on Figure 5, left, where the verti
al and horizontal bran
hesare re
tangles of sizes 2 × 4 and 4 × 2, respe
tively. The Lagrange multiplier is 
hosen as ℓ = 50.
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Figure 4. Cantilever: boundary 
onditions (left) and optimal density (right)

Figure 5. Mast: boundary 
onditions (left) and optimal density (right)
Γ Γ
F2 F1

Figure 6. Gripping me
hanism: boundary 
onditions (left) and optimal density (right)The su

essive meshes 
onsist of 851, 3301 and 13001 nodes. The obtained solution is depi
ted onFigure 5, right.8.3. Gripping me
hanism. We 
onsider a simpli�ed model of gripping me
hanism. The loadedpart of the boundary is split into ΓF = ΓF1 ∪ ΓF2, see Figure 6, left. The fun
tions ϕ and ψ arede�ned as
ϕ = ϕ1χΓF1

+ ϕ2χΓF2
, ψ = ψ1χΓF1

+ ψ2χΓF2
,with ϕ1 = 1, ϕ2 = 10, ψ1 = 1, ψ2 = 0. The Lagrange multiplier is 
hosen as ℓ = 0.3. We usethe parameters γ+ = 1, γ− = 10−2, β = 10−2, and su

essive meshes 
ontaining 3467, 13693 and54425 nodes. The obtained solution is depi
ted on Figure 6, right.



13Appendix A. Mathemati
al 
omplementsThe goal of this appendix is to prove Theorem 4.2. We begin by two preliminary lemmas.Lemma A.1. Let S be the set of polarization matri
es generated by arbitrary ellipses, i.e,
S = {RQr,eR

T , R ∈ U , 0 < e ≤ 1}.Then S is the set of all 2× 2 symmetri
 positive de�nite matri
es P verifyingtra
e (P−1) = 1 + r, tra
e (P ) < 1 +
1

r
. (26)Proof. If P ∈ S, one easily 
he
ks (26). Suppose that P satis�es (26) and denote by λ1, λ2 theeigenvalues of P , whi
h satisfy

1

λ1
+

1

λ2
= 1 + r, λ1 + λ2 < 1 +

1

r
. (27)We dedu
e from (27) that

λ1 >
1

1 + r
,

λ1 + λ2 −

(

1 +
1

r

)

=

(

1 +
1

r

)

(1− rλ1)(1 − λ1)

(1 + r)λ1 − 1
< 0,whi
h entails

(1− λ1)(rλ1 − 1) > 0.Hen
e ê := (1− λ1)/(rλ1 − 1) > 0. If ê ≤ 1, we set e = ê, so that λ1 = (1 + e)/(1 + re) and, using(27), λ2 = (1 + e)/(e + r). If ê > 1, we set e = 1/ê, so that λ1 = (1 + e)/(e+ r) and, using (27),
λ2 = (1 + e)/(1 + re). In both 
ases P has the same eigenvalues as Qr,e, thus there exists R ∈ Usu
h that P = RQr,eR

T . �Lemma A.2. The 
losure of S is the set of all symmetri
 positive de�nite matri
es P verifyingtra
e (P−1) = 1 + r, tra
e (P ) ≤ 1 +
1

r
. (28)Proof. Clearly, (28) is ful�lled by all P belonging to the 
losure of S, denoted by 
l(S). In addition,every eigenvalue λ of a matrix P ∈ S satis�es λ ≥ 1/(1 + r). Hen
e ea
h P ∈ 
l(S) is symmetri
positive de�nite. Suppose now that P is a symmetri
 positive de�nite matrix verifyingtra
e (P−1) = 1 + r, tra
e (P ) = 1 +

1

r
. (29)Using (29) we obtain that the eigenvalues of P are 1 and 1/r. Therefore there exists R ∈ U su
hthat

P = R

(

1 0
0 1/r

)

RT .Let (αn) be a sequen
e of positive numbers su
h that
αn >

1

1 + r
∀n ∈ N, lim

n→∞
αn → 1,and de�ne

βn =
αn

αn(1 + r) − 1
> 0,

Pn = R

(

αn 0
0 βn

)

RT .By 
onstru
tion, we have for all n
1

αn
+

1

βn
= 1 + r,
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an := αn + βn −

(

1 +
1

r

)

=

(

1 +
1

r

)

(1− αn)(1− rαn)

αn(1 + r) − 1
.We 
hoose (αn) su
h that

αn < 1 if r > 1,
αn > 1 if r < 1.In ea
h 
ase, for n large enough, an < 0, hen
e Pn ∈ S. As limn→∞ Pn = P , we 
on
lude that

P ∈ 
l(S). �We are now in position to prove Theorem 4.2. First, we easily 
he
k that, in the nontrivial 
asewhere U, V 6= 0, Λ+ and Λ− given by (20) are eigenvalues of M asso
iated with the eigenve
tors
U/|U | + V/|V | and U/|U | − V/|V |, respe
tively. Suppose that γ ∈ E is a lo
al minimizer of jwith respe
t to every ellipti
 in
lusion, and 
hoose x ∈ D−

γ . A

ording to Lemma 2.3, we have
gγ,ω(x) ≥ 0 for any ellipse ω. Then the 
ondition (22)(a) will be ful�lled if we set

g⋆γ(x) = inf{gγ,ω(x), ω ellipse}.We now 
he
k that the above in�mum satis�es (21)(a). For ea
h ellipse ω, we write (18) in theform
gγ,ω(x) = Pω,r :M(x) + ℓ.With the notation of Lemma A.1, we have

g⋆γ(x) = inf{P :M + ℓ, P ∈ S}.As S is bounded, we also have
g⋆γ(x) = min{P :M + ℓ, P ∈ 
l(S)}.Let us 
onsider an arbitrary P ∈ 
l(S), whi
h we write in the form

P = RP̂RT , P̂ =

(

λ+ 0
0 λ−

)

, R ∈ U , λ+ ≥ λ− > 0.Likewise, there exists S ∈ U su
h that
M = SM̂ST , M̂ =

(

Λ+ 0
0 Λ−

)

.Set T = STR. As T ∈ U , there exists φ ∈ R su
h that
T =

(

cosφ − sinφ
sinφ cosφ

) or T =

(

cosφ sinφ
sinφ − cosφ

)

.We arrive in both 
ases at
P :M = (T P̂T T ) : M̂ = (λ+ − λ−)(Λ+ − Λ−) cos2 φ+ Λ+λ− + Λ−λ+. (30)Arguing as in Lemma A.1 with the 
hara
terization of 
l(S) given by Lemma A.2, we obtain that

(1− λ±)(rλ± − 1) ≥ 0.Sin
e x ∈ D−
γ , we have r = γ+/γ− > 1, hen
e the above inequality implies that 1/r ≤ λ− ≤ λ+ ≤ 1.Using that Λ− ≤ 0 ≤ Λ+ we derive

P :M ≥
Λ+

r
+ Λ−.In addition, this bound is attained for cosφ = 0, λ+ = 1, λ− = 1/r, whi
h provides (21)(a). The
ase where x ∈ D+

γ 
an be treated in a similar way, with inf repla
ed by sup and r = γ−/γ+ < 1.
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