
CONNECTIONS BETWEEN TOPOLOGICAL SENSITIVITY ANALYSIS ANDMATERIAL INTERPOLATION SCHEMES IN TOPOLOGY OPTIMIZATIONSAMUEL AMSTUTZAbstrat. Material interpolation shemes, like SIMP, are very popular in topology optimiza-tion. They onvert the di�ult 0-1 problem into a nonlinear programming problem de�nedover a onvex set by involving an interpolation (or penalization) funtion, usually onstrutedin rather empirial ways. This paper gives an insight into suh methods with the help of thenotion of topologial sensitivity, and in partiular provides some arguments for the hoie of thepenalization funtion. A simple algorithm based on these onepts is proposed and illustratedby numerial experiments. 1. IntrodutionLet D be a bounded domain of Rd, d = 2 or 3, with a Lipshitz boundary Γ made of two disjointparts ΓD and ΓN , with ΓD of nonzero measure and ΓN of lass C1. We fous on the followingminimization problem, with the notation spei�ed below:
min

(γ,u)∈E×V
J(γ, u) (1)subjet to ∫

D

γ∇u.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ V . (2)The symbol ∇ stands for the gradient operator, and the dot notation is used for the anonialsalar produt of Rd. For the two unknowns γ and u the feasible sets are respetively
E := {γ : D → {γ−, γ+}, γ measurable},

V := {u ∈ H1(D), u|ΓD=0}.The onstants γ+ > γ− > 0, the distribution ϕ ∈ H−1/2(ΓN ), and the funtional J : E × V → Rare given data. For onveniene we denote by j(γ) := J(γ, uγ) the redued ost, or objetive, with
uγ the solution of (2). Subsequently γ and uγ will be referred to as the density (or ondutivity)and the state, respetively. Note that, in many appliations, the weak phase approximates anempty region, whih means that γ− ≪ γ+.Due to the �bang-bang� nature of the targeted density γ, Problem (1)-(2) falls into the frameworkof topology optimization. A number of methods have been devised for its solution, whih we brie�yreall. A �rst lass of methods, sometimes known as lassial shape optimization [19, 27℄, relieson the ontrol of the interfae Γγ where γ jumps. The sensitivity analysis of the objetive withrespet to the position of Γγ leads to the notion of shape derivative. Algorithms based on the shapederivative produe in priniple smooth variations of Γγ , in partiular, the number of its onnetedomponents annot hange. This is a serious drawbak in many appliations. An importantexeption must nevertheless be mentioned. It onerns level set methods [4, 22, 23℄, where Γγ isrepresented as the zero level set of a smooth funtion ψ de�ned overD. A Hamilton-Jaobi equationis then often used to move the interfae in the desired diretion. Within this setting, onnetedKey words and phrases. topology optimization, material interpolation, SIMP, topologial sensitivity, topologialderivative. 1
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2omponents an anel or merge, but an hardly be reated, at least in two dimensions. In fat,these methods lak a nuleation mehanism. The topologial sensitivity analysis aims preisely atevaluating the variation of the objetive when γ is swithed within a small region. This onepthas been introdued in [15℄, mathematially justi�ed in [16, 26℄, and then developed by severalauthors, see, e.g., [6, 7, 17, 20, 21℄. Therefore, the topologial sensitivity may be advantageouslyombined with level set methods [3, 8, 13℄. A basially di�erent lass of methods onsists in relaxingthe onstraint γ(x) ∈ {γ−, γ+}. This is usually ahieved by invoking the homogenization theory[1, 10℄. This latter approah bene�ts from nie theoretial properties, like di�erentiability andexistene of global minimizers. However, eventually retrieving a feasible solution requires a ratherheuristi penalization post-proessing. Simpli�ed methods, alled material interpolation shemesor methods of �titious materials [9, 11, 12, 25℄, are very popular in the engineering ommunity.They are based on the two following priniples. Firstly, the set of admissible values {γ−, γ+} issimply extended to its onvex hull [γ−, γ+], thus the whole theory of homogenization is not needed.Seondly, the penalization is diretly inluded in the optimization proess by a modi�ation of thestate equation. Typially, in the SIMP model (Solid Isotropi Material with Penalization), thedensity γ in (2) is replaed by a power law θ(γ) = γp whih, for some objetive funtions, tendsto enfore extremal values. This formulation has proven partiularly simple and e�ient in manyimportant ases. However, it has no proper theoretial justi�ation, and the hoie of the exponent
p is mainly empirial.The purpose of this paper is to give an insight into material interpolation shemes by interpretingthe assoiated �rst order neessary optimality onditions in terms of topologial sensitivity. Weshow that speial penalization funtions θ an be related to isotropi topologial perturbations,whih provides a lear meaning to the solutions obtained through this model. The power lawpenalization is retrieved in partiular ases.The paper is organized as follows. The notion of topologial sensitivity is realled in Setion 2.The aforementioned relations between material interpolation shemes and topologial sensitivityare exhibited in Setion 3. The ase of anisotropi perturbations is disussed in Setion 4, omple-mented by Appendix A. The extension to the linear elastiity setting is addressed in Setion 5. Agradient-like algorithm based on these onepts is desribed in Setion 6. Numerial experimentsare reported in Setions 7 and 8.2. Topologial sensitivity and optimality onditionsIn the sequel we shall use the following standard notation. The dot produt of two vetors
x, y ∈ R

d is denoted, as in the introdution, by x.y, while the Eulidean norm of x is denoted by
|x|. The open ball of enter x̂ ∈ R

d and radius ρ > 0 is denoted by B(x̂, ρ) := {x ∈ R
d, |x− x̂| < ρ}.If A is a subset of Rd, |A| stands for the d-dimensional Lebesgue measure of A. In addition, χAstands for the harateristi funtion of A, i.e., χA(x) = 1 if x ∈ A, χA(x) = 0 if x /∈ A. Theinterior of A is denoted by intA, i.e., intA := {x ∈ A s.t. ∃ρ > 0, B(x, ρ) ⊂ A}. For any γ ∈ E wede�ne the sets

[γ = γ+] := {x ∈ D, γ(x) = γ+}, [γ = γ−] := {x ∈ D, γ(x) = γ−},

D+
γ := int[γ = γ+], D−

γ := int[γ = γ−].We also de�ne the funtion sγ : D+
γ ∪D−

γ → R by
sγ(x) =

{

1 if x ∈ D−
γ ,

−1 if x ∈ D+
γ .Below we de�ne a notion of loal optimality relative to a partiular lass of perturbations. Moregeneral perturbations are onsidered in Setion 4.



3De�nition 2.1. We say that γ ∈ E is a loal minimizer of j if, for every family (x1, ..., xN ) ∈
(D+

γ ∪D−
γ )

N , N ∈ N \ {0}, there exists ρ̄ > 0 suh that, for all (ρ1, ..., ρN ) ∈ R
N
+ ,

max
i=1,...,N

ρi < ρ̄ =⇒ j

(

γ + (γ+ − γ−)

N
∑

i=1

sγ(xi)χB(xi,ρi)

)

≥ j(γ).In other words, the domain [γ = γ+] is said to be loally optimal if j(γ) annot be dereased bythe reation of an arbitrary set of small spherial inlusions. The onept of topologial derivativegives a quantitative information on the variation of j(γ) with respet to suh perturbations.De�nition 2.2. We say that the funtional j admits a topologial derivative g(x̂) at the point
x̂ ∈ D+

γ ∪D−
γ if the following asymptoti expansion holds when ρ→ 0:

j(γ + sγ(x̂)(γ
+ − γ−)χB(x̂,ρ))− j(γ) = sγ(x̂)(γ

+ − γ−)|B(x̂, ρ)|gγ(x̂) + o(|B(x̂, ρ)|), (3)with limρ→0
o(|B(x̂,ρ)|)
|B(x̂,ρ)| = 0.As a straightforward onsequene of De�nitions 2.2 and 2.1 we derive the following result.Lemma 2.3. Suppose that γ is a loal minimizer of j and j admits a topologial derivative gγ(x)at all point x ∈ D+

γ ∪D−
γ . Then

gγ(x) ≥ 0 ∀x ∈ D−
γ ,

gγ(x) ≤ 0 ∀x ∈ D+
γ .

(4)Proof. We hoose a single perturbation entered at a point x̂, for instane x̂ ∈ D−
γ . By De�nition2.2 we have

j(γ + (γ+ − γ−)χB(x̂,ρ))− j(γ) = (γ+ − γ−)|B(x̂, ρ)|gγ(x̂) + o(|B(x̂, ρ)|).In view of De�nition 2.1 this quantity is nonnegative as soon as ρ is su�iently small. Dividing by
|B(x̂, ρ)| and passing to the limit as ρ→ 0 entails gγ(x̂) ≥ 0. Likewise gγ(x̂) ≤ 0 when x̂ ∈ D+

γ . �To �x ideas, we assume heneforth that the objetive funtional is of the form
J(γ, u) =

∫

ΓN

ψuds+ ℓ

∫

D

γdx, (5)with ψ ∈ H−1/2(ΓN ). The salar onstant ℓ an be seen as a Lagrange multiplier assoiated witha volume onstraint. The following result is proven in [6℄.Proposition 2.4. When J is de�ned by (5), the redued ost j admits a topologial derivative
gγ(x) at eah point x ∈ D±

γ given by
gγ(x) = k±γ(x)∇uγ(x).∇vγ(x) + ℓ,where the adjoint state vγ ∈ V solves

∫

D

γ∇vγ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V , (6)and the expression of k± is reported in Table 1.



4d 2 3
k−

2

γ+ + γ−
3

γ+ + 2γ−

k+
2

γ+ + γ−
3

2γ+ + γ−Table 1. Expressions of k± for the ondutivity problem.3. Connetion with material interpolation shemesWe now onsider the auxiliary problem
min

(γ,u)∈Ẽ×V
J(γ, u) (7)subjet to ∫

D

θ(γ)∇u.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ V . (8)Compared with (1)-(2), γ is sought in the onvex set
Ẽ := {γ : D → [γ−, γ+], γ measurable},and the state equation is modi�ed by the introdution of a smooth (at least C1) funtion θ :

(γ−−, γ++) → (γ−−, γ++), with 0 < γ−− < γ− < γ+ < γ++. We assume further that θ isinreasing and satis�es
θ(γ−) = γ−, θ(γ+) = γ+.For this problem we denote by jθ(γ) := J(γ, uθ,γ) the redued ost, with uθ,γ the solution of (8).We will afterwards use standard notions of di�erential alulus in Banah spaes. The readerwho is not familiar with this �eld may refer, e.g., to [14, 18℄. More spei�ally, the followingproposition is a diret appliation of the adjoint method for the alulus of derivatives (see, e.g.,[2, 18℄).Proposition 3.1. The redued ost jθ is Fréhet di�erentiable on L∞(D, (γ−−, γ++)) with thederivative in the diretion δ ∈ L∞(D) given by

Djθ(γ)δ =

∫

D

gθ,γδdx, (9)with
gθ,γ := θ′(γ)∇uθ,γ .∇vθ,γ + ℓ,and the adjoint state vθ,γ ∈ V solution of

∫

D

θ(γ)∇vθ,γ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V . (10)Proof. First, it stems from the impliit funtion theorem that the mapping S : γ ∈ L∞(D, (γ−−, γ++)) 7→
uθ,γ ∈ V is Fréhet di�erentiable. We write for simpliity u̇θ,γ := DS(uθ,γ)δ the derivative in thediretion δ ∈ L∞(D). Then jθ is di�erentiable by omposition, and the hain rule yields

Djθ(γ)δ =

∫

ΓN

ψu̇θ,γds+ ℓ

∫

D

δdx.On using the adjoint equation (10) to rewrite the �rst integral we obtain
Djθ(γ)δ = −

∫

D

θ(γ)∇vθ,γ .∇u̇θ,γdx+ ℓ

∫

D

δdx. (11)



5Now di�erentiating (8) yields
∫

D

[θ′(γ)δ∇uθ,γ.∇η + θ(γ)∇u̇θ,γ .∇η]dx = 0 ∀η ∈ V . (12)Combining (11) and (12) provides (9). �For the optimality of jθ we use the standard de�nition realled below. For simpliity we denoteby ‖.‖ the L∞ norm on D, i.e., ‖γ‖ = inf{c, |γ| ≤ c a.e. in D}.De�nition 3.2. We say that γ ∈ Ẽ is a loal minimizer of jθ if there exists α > 0 suh that
∀γ̃ ∈ Ẽ , ‖γ − γ̃‖ ≤ α ⇒ jθ(γ) ≤ jθ(γ̃).From Proposition 3.1 we derive the following neessary optimality onditions.Corollary 3.3. Suppose that γ is a loal minimizer of jθ. Then

gθ,γ ≥ 0 a.e. on [γ = γ−],
gθ,γ = 0 a.e. on [γ− < γ < γ+],
gθ,γ ≤ 0 a.e. on [γ = γ+].

(13)Proof. By virtue of the onvexity of Ẽ we have the optimality ondition (see, e.g., [18℄)
Djθ(γ)(γ̃ − γ) ≥ 0 ∀γ̃ ∈ Ẽ .Consider an arbitrary pair (λ, δ) ∈ (γ−, γ+)× L∞(D) with δ ≥ 0 a.e., and set

γ̃ = γ + χ[γ≤λ]tδ.For t > 0 su�iently small we have γ̃ ∈ Ẽ , hene
Djθ(γ)(γ̃ − γ) = t

∫

[γ≤λ]

gθ,γδdx ≥ 0.It follows that
∫

[γ≤λ]

gθ,γδdx ≥ 0 ∀δ ∈ L∞(D), δ ≥ 0,and subsequently that
gθ,γ ≥ 0 a.e. on [γ ≤ λ].Similarly we �nd that
gθ,γ ≤ 0 a.e. on [γ ≥ λ].Using that λ ∈ (γ−, γ+) is arbitrary ompletes the proof. �From omparison of Lemma 2.3 and Corollary 3.3, it appears that, apart from the onvexi�ationof the feasible set, the two optimality systems essentially di�er by the expression of the sensitivities.Then a natural question arises: is there a funtion θ suh that those two sensitivities oinide?This question is addressed by the following theorem.Theorem 3.4. There exists a unique polynomial funtion γ 7→ θ(γ) of degree not larger than 3suh that θ(γ(x)) = γ(x) and gθ,γ(x) = gγ(x) for all γ ∈ E and all x ∈ D−

γ ∪D+
γ . This funtion isgiven by

θ(γ) =
γ2 + γ+γ−

γ+ + γ−
if d = 2,

θ(γ) =
−γ3 + 3(γ+ + γ−)γ2 + 2γ+γ−(γ+ + γ−)

(2γ+ + γ−)(γ+ + 2γ−)
if d = 3.

(14)If θ is hosen as above, γ ∈ E and |D \D−
γ \D+

γ | = 0, then jθ(γ) = j(γ) and the onditions (4)and (13) are equivalent.



6Proof. In order to ful�ll the assertions of the theorem we need to onstrut a smooth funtion θsuh that
θ(γ−) = γ−, θ(γ+) = γ+, θ′(γ−) = k−γ−, θ′(γ+) = k+γ+. (15)For a polynomial interpolation of the form

θ(γ) = a3γ
3 + a2γ

2 + a1γ + a0,the onditions (15) are equivalent to














a3(γ
−)3 + a2(γ

−)2 + a1γ
− + a0 = γ−,

a3(γ
+)3 + a2(γ

+)2 + a1γ
+ + a0 = γ+,

3a3(γ
−)2 + 2a2γ

− + a1 = k−γ−,
3a3(γ

+)2 + 2a2γ
+ + a1 = k+γ+.

(16)By Gauss elimination, we �nd that the above system admits a unique solution given by
a3 =

k+γ+ + k−γ− − 2

(γ+ − γ−)2
,

a2 =
(1− k+γ+)(γ+ + 2γ−) + (1− k−γ−)(2γ+ + γ−)

(γ+ − γ−)2
,

a1 = 1−
(1− k+γ+)γ−(2γ+ + γ−) + (1 − k−γ−)γ+(γ+ + 2γ−)

(γ+ − γ−)2
,

a0 =
γ+γ−

(γ+ − γ−)2
[

(1 − k+γ+)γ− + (1− k−γ−)γ+
]

.Now using the expressions of k+ and k− from Table 1 results in (14). �Remark 3.5. For γ+ = 1 and γ− → 0 we have
θ(γ) ∼ γ2 if d = 2,

θ(γ) ∼ −
1

2
γ3 +

3

2
γ2 if d = 3.

(17)These funtions are plotted in Figure 1.Remark 3.6. By virtue of the relations
|D \D−

γ \D+
γ | = |[γ = γ+] \ int[γ = γ+]|+ |[γ = γ−] \ int[γ = γ−]|

≤ |∂[γ = γ+]|+ |∂[γ = γ−]|,the ondition |D \ D−
γ \ D+

γ | = 0 will be ful�lled as soon as the sets ∂[γ = γ+] and ∂[γ = γ−]have zero d-dimensional Lebesgue measure. This will hold true whenever those sets have somesmoothness, for instane, when they are Lipshitz.Remark 3.7. Of ourse, Theorem 3.4 does not imply that Problems (1)-(2) and (7)-(8) are equiv-alent sine there is no guarantee that the solutions (global or loal) to (7)-(8) belong to E . Wemention in this respet the paper [24℄, where it is proven that, for θ(γ) = γp, in the self-adjointase and for a disrete version, solutions to (7)-(8) are neessarily in E for p su�iently high.4. On optimality with respet to ellipti perturbationsThis setion deals with the extension of the previous onepts of topologial sensitivity analysisand related optimality onditions to non spherial inlusions. This means that, in the asymptotiexpansion (3), B(x̂, ρ) is replaed by
ω(x̂, ρ) := x̂+ ρω,
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Figure 1. Funtion θ for γ+ = 1 and γ− → 0, from top to bottom: ondutivity3D, ondutivity 2D, linear elastiity 2D.where ω is an arbitrary referene domain. When it exists, the assoiated topologial derivative isdenoted by gγ,ω. The following result is proven in [6℄.Proposition 4.1. When J is de�ned by (5), the redued ost j admits a topologial derivative
gγ,ω(x) at eah point x ∈ D±

γ given by
gγ,ω(x) = Pω,r∇uγ(x).∇vγ(x) + ℓ, (18)where the adjoint state vγ ∈ V solves

∫

D

γ∇vγ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ V . (19)The polarization matrix Pω,r is always symmetri and depends only on ω and the density ontrast
r, i.e., r = γ+/γ− if x ∈ D−

γ , r = γ−/γ+ if x ∈ D+
γ . If ω is the ellipse with semi major andminor axes of length 1 and e, respetively, direted along the main axes of the oordinate system,then the polarization matrix admits the expression

Pω,r = Qr,e :=







1 + e

1 + re
0

0
1 + e

e+ r






.Detailed properties of polarization matries an be found in [5℄. In partiular, if ω′ = Rω where

R belongs to the set U of unitary transformations of R2, then the assoiated polarization matrixbeomes
Pω′,r = RPω,rR

T .The following theorem states topologial optimality onditions with respet to the lass of allellipti inlusions. The proof, whih is fairly tehnial, is deferred to Appendix A.Theorem 4.2. Set U = ∇uγ, V = ∇vγ , M = (U ⊗ V + V ⊗U)/2, and denote by Λ+ and Λ− thelargest and smallest eigenvalues of M , respetively, i.e.,
Λ+ =

U.V + |U ||V |

2
, Λ− =

U.V − |U ||V |

2
. (20)De�ne

g⋆γ =















γ−

γ+
Λ+ + Λ− + ℓ in D−

γ , (a)

γ+

γ−
Λ+ + Λ− + ℓ in D+

γ . (b)
(21)



8A neessary optimality ondition for γ ∈ E to be a loal minimizer of j with respet to arbitraryellipti inlusions is
g⋆γ(x) ≥ 0 ∀x ∈ D−

γ , (a)
g⋆γ(x) ≤ 0 ∀x ∈ D+

γ . (b)
(22)Let us now give some pratial impliations of Theorem 4.2.(1) In the self-adjoint ase vγ = −uγ (i.e., ψ = ϕ) we derive

g⋆γ = −|∇uγ |
2 + ℓ in D−

γ ∪D+
γ .Then solving the optimality onditions (22) amounts to �nding a solution (γ, u) ∈ E × Vof (7)-(8) with the interpolation funtion θ(γ) = γ (see Proposition 3.1 and Corollary3.3). It is well known (see, e.g., [2℄) that this problem admits solutions in Ẽ × V , but theorresponding γ is usually not of bang-bang type. This suggests that (22) has few hanesto admit a solution in E .(2) Consider now a non self-adjoint ase and a point x ∈ D+

γ where ∇uγ(x) 6= −∇vγ(x).Hene Λ+(x) > 0, and (22)(b) reads
γ+

γ−
Λ+(x) + Λ−(x) + ℓ ≤ 0.When γ− ≪ γ+, the above ondition is hardly ful�lled, whih again suggests the abseneof loal minimizer relative to ellipti inlusions.We therefore onlude that imposing optimality with respet to the lass of all ellipti inlusionsis generally too strong to allow for the existene of solutions in E . This implies that interpolationmethods attempting to solve these onditions are likely to generate regions of intermediate density,whih are usually undesirable due to their unlear mehanial interpretation [2, 11℄. Aordingly,we subsequently limit ourselves to spherial inlusions.5. Generalization to linear elastiityWe onsider now a linear elastiity problem in two spae dimensions. The domain D is de�nedas before. The state is the displaement �eld

u ∈ V := {u ∈ (H1(D))2, u|ΓD=0},and the equilibrium equation reads
∫

D

γσ(u) : ∇sη =

∫

ΓN

ϕ.ηds ∀η ∈ V .Here σ(u) is the stress normalized to a unitary Young modulus, ∇sη := (∇η + ∇T η)/2 is thesymmetri gradient (strain), and ϕ ∈ (H−1/2(ΓN ))2 is a presribed load. The stress is omputedby the Hooke law
σ(u) = λtr∇su+ 2µ∇su,where (λ, µ) are the Lamé oe�ients. The following result is taken from [6℄.Proposition 5.1. When J is de�ned by (5), the redued ost j admits a topologial derivative g(x)at eah point x ∈ D±

γ given by
gγ(x) =

κ+ 1

2(κr± + 1)

[

2σ(uγ)(x) : ∇
svγ(x) +

(r± − 1)(κ− 2)

κ+ 2r± − 1
trσ(uγ)(x)tr∇svγ(x)

]

+ ℓ,where
κ =

λ+ 3µ

λ+ µ
, r+ =

γ−

γ+
, r− =

γ+

γ−
,



9and the adjoint state vγ ∈ V solves
∫

D

γσ(vγ) : ∇
sηdx = −

∫

ΓN

ψ.ηds ∀η ∈ V . (23)Heneforth we plae ourselves in the plane stress ase. Then the Lamé oe�ients are relatedto the Poisson ratio ν by
λ =

ν

1− ν2
, µ =

1

2(1 + ν)
,whih entails

κ =
3− ν

1 + ν
.Obviously, Lemma 2.3, Proposition 3.1 and Corollary 3.3 straightforwardly extend to the linearelastiity ase for the gradient

gθ,γ = θ′(γ)σ(uθ,γ) : ∇
svθ,γ + ℓ.In order to be able to math gθ,γ and gγ with the help of a salar-valued interpolation funtion,we restrit ourselves to the Poisson ratio ν = 1/3, whih is a rather standard value. In this asewe have κ = 2, and the topologial derivative admits the simpler expression

gγ(x) = k±γ(x)σ(uγ)(x) : ∇
svγ(x) + ℓ ∀x ∈ D±

γ ,with
k− =

3

2γ+ + γ−
, k+ =

3

γ+ + 2γ−
.By arguing as in Theorem 3.4, we obtain the following result.Theorem 5.2. Set

θ(γ) =
2γ3 + 3γ+γ−γ + 2γ+γ−(γ+ + γ−)

(γ+ + 2γ−)(2γ+ + γ−)
, (24)and suppose that γ ∈ E and |D \D−

γ \D+
γ | = 0. Then jθ(γ) = j(γ), gθ,γ = gγ, and the onditions(4) and (13) are equivalent.Remark 5.3. For γ+ = 1 and γ− → 0 we have

θ(γ) ∼ γ3. (25)Interestingly, this ubi power law penalization is the most frequently used within the SIMP model.6. Optimization algorithmIn view of the preeding �ndings, we replae the solution of (1)-(2) by that of the interpolatedproblem (7)-(8), that is
min
γ∈Ẽ

jθ(γ).The funtion θ is hosen aording to Theorems 3.4 (in ondutivity) or 5.2 (in elastiity). Twolasses of methods are of ommon usage in topology optimization with material interpolationshemes, for whih we refer to [12℄. On one hand the so-alled optimality riteria methods aree�ient in some ases but they are quite heuristi. On the other hand onvex approximationsmethods, like the Method of Moving Asymptotes (MMA), onsist in iteratively solving simplersubproblems onstruted so as to aount for approximations of the objetive and possible on-straints, with the property of being separable in the elements. Here we simply use a projetedgradient algorithm.Algorithm 1. (1) Initialization: hoose β > 0, α ∈ (0, 1), γ0 ∈ Ẽ.



10(2) Loop while ‖γn+1 − γn‖/‖γn‖ ≤ β:
γn+1 = max(γ−,min(γ+, γn − tn∇jθ(γn))),where tn = t0nα

m and m is the smallest integer suh that
jθ(γn+1) < jθ(γn).In the omputations we have always used α = 0.5, γ0 ≡ (γ−+γ+)/2, and t0n = ‖γn‖/‖∇jθ(γn)‖.In this latter expression, as well as in the stopping riterion, the L2 norm on D has been hosen.For the disretization of the state equation we use �nite elements with pieewise linear shapefuntions on a triangular mesh. We denote by Vh the �nite element spae and by {e1, ..., eN} the�nite element basis. The density γ is also represented on this basis, as
γ =

N
∑

i=1

γiei,and the vetor (γ1, ..., γN ) is the design variable. The equivalent density within eah element isomputed by applying a linear interpolation operator S ∈ L(Vh, Th), where Th is the set of funtionsde�ned on D whih are onstant per element. Then the disrete state uθ,γ ∈ Vh is omputed by
∫

D

θ(Sγ)∇uθ,γ.∇ηdx =

∫

ΓN

ϕηds ∀η ∈ Vh,and the disrete ost is de�ned by
jθ(γ) =

∫

ΓN

ψuθ,γds+ ℓ

∫

D

Sγdx.Arguing as in Proposition 3.1, we �nd that the derivative of the disrete ost is
Djθ(γ)δ =

∫

D

[θ′(Sγ)∇uθ,γ.∇vθ,γSδ + ℓSδ]dx,with the disrete adjoint state vθ,γ solution of
∫

D

θ(Sγ)∇vθ,γ .∇ηdx = −

∫

ΓN

ψηds ∀η ∈ Vh.Denoting by S⋆ the adjoint operator of S with respet to the inner produt of L2(D) we obtainthe gradient
∇jθ(γ) = S⋆ (θ′(Sγ)∇uθ,γ.∇vθ,γ + ℓ) .Remark 6.1. Pieewise linear �nite elements are seldom used in topology optimization beausethey are known to produe instabilities in the form of hekerboard patterns [2, 12℄. However inall the numerial tests performed this phenomenon has not been enountered. Probably this isdue to the fat that the design variable is here de�ned at the nodes, whereas it is usually attahedto the elements. Hene, thanks to the possibility to use low order triangular �nite elements, thepresent algorithm proves to be of remarkably simple implementation and appropriate for arbitrarydomains.In the following two setions we show some appliations of this algorithm to ondutivity andlinear elastiity aademi problems. The main feature whih stands out from those experimentsis that, at onvergene, the intermediate densities are almost on�ned to the elements loated atthe interfae between the two extremal materials. Therefore, this region an be made arbitrarilysmall by mesh re�nement.
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Figure 2. Condutor: omputational domain and boundary onditions.

Figure 3. Condutor: optimal density for ℓ = 1 (left), and ℓ = 10 (right).7. Numerial examples in ondutivityWe use the parameters γ+ = 1, γ− = 10−5 and β = 10−2. In the example under onsiderationthe domain D is a square of size 1.5, with the boundary onditions indiated on Figure 2. In theobjetive funtional we take ψ = ϕ, hene the problem is self-adjoint, i.e., vθ,γ = −uθ,γ. We use amesh ontaining N = 29041 nodes. Figures 3 shows the results of two omputations, orrespondingto the Lagrange multipliers ℓ = 1 and ℓ = 10. The implementation is done in Matlab.8. Numerial examples in elastiityFor strutural optimization problems, in order to redue the risk to fall in loal minima andsave omputer time, we use a sequene of iteratively re�ned meshes, like in [8℄. The optimization is�rst performed on a oarse mesh. After onvergene, the mesh is re�ned, the density γ is projetedonto the new mesh, and the optimization is ontinued. This proedure is repeated up to the �naldesired mesh. We present three examples.8.1. Cantilever. Here and in the subsequent setion 8.2 we use γ+ = 1, γ− = 10−5 and β = 10−3.Again we plae ourselves in the self-adjoint ase (ψ = ϕ), whih orresponds to the standardompliane minimization problem. The domain D is a retangle of size 2 × 1 (see Figure 4, left).The Lagrange multiplier is hosen as ℓ = 100. The suessive meshes onsist of 431, 1661, 6521and 25841 nodes. The obtained distribution of material is depited on Figure 4, right.8.2. Mast. The domain D is shown on Figure 5, left, where the vertial and horizontal branhesare retangles of sizes 2 × 4 and 4 × 2, respetively. The Lagrange multiplier is hosen as ℓ = 50.
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Figure 4. Cantilever: boundary onditions (left) and optimal density (right)

Figure 5. Mast: boundary onditions (left) and optimal density (right)
Γ Γ
F2 F1

Figure 6. Gripping mehanism: boundary onditions (left) and optimal density (right)The suessive meshes onsist of 851, 3301 and 13001 nodes. The obtained solution is depited onFigure 5, right.8.3. Gripping mehanism. We onsider a simpli�ed model of gripping mehanism. The loadedpart of the boundary is split into ΓF = ΓF1 ∪ ΓF2, see Figure 6, left. The funtions ϕ and ψ arede�ned as
ϕ = ϕ1χΓF1

+ ϕ2χΓF2
, ψ = ψ1χΓF1

+ ψ2χΓF2
,with ϕ1 = 1, ϕ2 = 10, ψ1 = 1, ψ2 = 0. The Lagrange multiplier is hosen as ℓ = 0.3. We usethe parameters γ+ = 1, γ− = 10−2, β = 10−2, and suessive meshes ontaining 3467, 13693 and54425 nodes. The obtained solution is depited on Figure 6, right.



13Appendix A. Mathematial omplementsThe goal of this appendix is to prove Theorem 4.2. We begin by two preliminary lemmas.Lemma A.1. Let S be the set of polarization matries generated by arbitrary ellipses, i.e,
S = {RQr,eR

T , R ∈ U , 0 < e ≤ 1}.Then S is the set of all 2× 2 symmetri positive de�nite matries P verifyingtrae (P−1) = 1 + r, trae (P ) < 1 +
1

r
. (26)Proof. If P ∈ S, one easily heks (26). Suppose that P satis�es (26) and denote by λ1, λ2 theeigenvalues of P , whih satisfy

1

λ1
+

1

λ2
= 1 + r, λ1 + λ2 < 1 +

1

r
. (27)We dedue from (27) that

λ1 >
1

1 + r
,

λ1 + λ2 −

(

1 +
1

r

)

=

(

1 +
1

r

)

(1− rλ1)(1 − λ1)

(1 + r)λ1 − 1
< 0,whih entails

(1− λ1)(rλ1 − 1) > 0.Hene ê := (1− λ1)/(rλ1 − 1) > 0. If ê ≤ 1, we set e = ê, so that λ1 = (1 + e)/(1 + re) and, using(27), λ2 = (1 + e)/(e + r). If ê > 1, we set e = 1/ê, so that λ1 = (1 + e)/(e+ r) and, using (27),
λ2 = (1 + e)/(1 + re). In both ases P has the same eigenvalues as Qr,e, thus there exists R ∈ Usuh that P = RQr,eR

T . �Lemma A.2. The losure of S is the set of all symmetri positive de�nite matries P verifyingtrae (P−1) = 1 + r, trae (P ) ≤ 1 +
1

r
. (28)Proof. Clearly, (28) is ful�lled by all P belonging to the losure of S, denoted by l(S). In addition,every eigenvalue λ of a matrix P ∈ S satis�es λ ≥ 1/(1 + r). Hene eah P ∈ l(S) is symmetripositive de�nite. Suppose now that P is a symmetri positive de�nite matrix verifyingtrae (P−1) = 1 + r, trae (P ) = 1 +

1

r
. (29)Using (29) we obtain that the eigenvalues of P are 1 and 1/r. Therefore there exists R ∈ U suhthat

P = R

(

1 0
0 1/r

)

RT .Let (αn) be a sequene of positive numbers suh that
αn >

1

1 + r
∀n ∈ N, lim

n→∞
αn → 1,and de�ne

βn =
αn

αn(1 + r) − 1
> 0,

Pn = R

(

αn 0
0 βn

)

RT .By onstrution, we have for all n
1

αn
+

1

βn
= 1 + r,
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an := αn + βn −

(

1 +
1

r

)

=

(

1 +
1

r

)

(1− αn)(1− rαn)

αn(1 + r) − 1
.We hoose (αn) suh that

αn < 1 if r > 1,
αn > 1 if r < 1.In eah ase, for n large enough, an < 0, hene Pn ∈ S. As limn→∞ Pn = P , we onlude that

P ∈ l(S). �We are now in position to prove Theorem 4.2. First, we easily hek that, in the nontrivial asewhere U, V 6= 0, Λ+ and Λ− given by (20) are eigenvalues of M assoiated with the eigenvetors
U/|U | + V/|V | and U/|U | − V/|V |, respetively. Suppose that γ ∈ E is a loal minimizer of jwith respet to every ellipti inlusion, and hoose x ∈ D−

γ . Aording to Lemma 2.3, we have
gγ,ω(x) ≥ 0 for any ellipse ω. Then the ondition (22)(a) will be ful�lled if we set

g⋆γ(x) = inf{gγ,ω(x), ω ellipse}.We now hek that the above in�mum satis�es (21)(a). For eah ellipse ω, we write (18) in theform
gγ,ω(x) = Pω,r :M(x) + ℓ.With the notation of Lemma A.1, we have

g⋆γ(x) = inf{P :M + ℓ, P ∈ S}.As S is bounded, we also have
g⋆γ(x) = min{P :M + ℓ, P ∈ l(S)}.Let us onsider an arbitrary P ∈ l(S), whih we write in the form

P = RP̂RT , P̂ =

(

λ+ 0
0 λ−

)

, R ∈ U , λ+ ≥ λ− > 0.Likewise, there exists S ∈ U suh that
M = SM̂ST , M̂ =

(

Λ+ 0
0 Λ−

)

.Set T = STR. As T ∈ U , there exists φ ∈ R suh that
T =

(

cosφ − sinφ
sinφ cosφ

) or T =

(

cosφ sinφ
sinφ − cosφ

)

.We arrive in both ases at
P :M = (T P̂T T ) : M̂ = (λ+ − λ−)(Λ+ − Λ−) cos2 φ+ Λ+λ− + Λ−λ+. (30)Arguing as in Lemma A.1 with the haraterization of l(S) given by Lemma A.2, we obtain that

(1− λ±)(rλ± − 1) ≥ 0.Sine x ∈ D−
γ , we have r = γ+/γ− > 1, hene the above inequality implies that 1/r ≤ λ− ≤ λ+ ≤ 1.Using that Λ− ≤ 0 ≤ Λ+ we derive

P :M ≥
Λ+

r
+ Λ−.In addition, this bound is attained for cosφ = 0, λ+ = 1, λ− = 1/r, whih provides (21)(a). Thease where x ∈ D+

γ an be treated in a similar way, with inf replaed by sup and r = γ−/γ+ < 1.
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