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Abstract. The topological derivative is defined as the first term of the asymptotic expansion of a
given shape functional with respect to a small parameter that measures the size of a singular domain
perturbation. It has applications in many different fields such as shape and topology optimization,
inverse problems, image processing and mechanical modeling including synthesis and/or optimal
design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling.
The topological derivative has been fully developed for a wide range of second order differential
operators. In this paper we deal with the topological asymptotic expansion of a class of shape
functionals associated with elliptic differential operators of order 2m, m ≥ 1. The general structure

of the polarization tensor is derived and the concept of degenerate polarization tensor is introduced.
We provide full mathematical justifications for the derived formulas, including precise estimates of
remainders.

1. Introduction

The topological derivative measures the sensitivity of a given shape functional with respect to
infinitesimal singular domain perturbations, such as the insertion of holes, inclusions, source-terms or
even cracks [12, 14, 16, 25]. Specifically, if the shape functional is denoted by J (Ω) and the domain
obtained after a perturbation of size ε localized around a point z is denoted by Ωε, it is defined by

DTJ (Ω) = lim
ε→0

J (Ωε)− J (Ω)

ϕ(ε)
,

for some appropriate scaling function ϕ(ε). This notion has proved to be a powerful tool for the
treatment of different problems such as topology optimization, inverse analysis and image processing
(see e.g. [7, 11, 17, 18, 19]), and has become a subject of intensive research. There are also some
applications in the multi-scale constitutive modeling context [8], fracture mechanics sensitivity analysis
[28] and damage evolution modeling [2]. All these problems share in common to be governed by partial
differential equations (PDE’s), and the type of PDE obviously impacts drastically on the mathematical
analysis involved. Concerning the theoretical developments of the topological asymptotic analysis, the
reader may refer to the papers [4, 13, 22], among others.

According to the literature, the topological derivative concept has been fully developed for a wide
range of second order equations, while a forth order equation is addressed in [6]. In this paper, the
topological asymptotic expansion of a class of shape functionals associated with an elliptic differential
operator of order 2m, with m ≥ 1, is derived. The topologically perturbed domain is obtained when an
arbitrarily shaped hole is introduced inside the initial domain. Then, the resulting void is filled with a
phase whose material properties present a contrast with the original ones. The main ingredient arising
in the asymptotic formula is the so-called Pólya-Szegö polarization tensor [24] (see also [3]), of which
we derive the general structure for the operators under consideration. We also introduce the concept
of degenerate polarization tensor, in the sense that it is independent of the shape of the topological
perturbation and, at the same time, its entries do not remain bounded when the contrast on the
material properties goes to zero. In this particular case it is remarkable that the polarization tensor
can be easily obtained in its closed form. We show that this phenomenon of degeneracy occurs when
the operator satisfies a particular algebraic property which is easy to check, a typical example being
the bi-Laplacian. Let us mention in this respect that the degeneracy of the bi-Laplacian occurs in
the context of dislocation modeling [26, 27]. It basically means that dislocated regions can be created
or annihilated (in the sense of nucleation) with an energetical cost independent of their shapes. The
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bi-Laplacian also appears in some plate models and thus our results have implications in the optimal
design of such thin structures, considering the compliance as objective function, for instance. Specific
examples of shape functionals and degenerated operators will be given in Section 4.2.

The paper is organized as follows. Some notation and preliminary statements are introduced in
Section 2. Basic properties of the boundary value problems under consideration are collected in
Section 3. The topological asymptotic expansion for a class of shape functionals is derived in its
general form in Section 4, and the concept of degenerate polarization tensor is introduced in Section
5. Some particular cases of differential operators, including degenerate cases, are presented in Section
6 together with a set of examples with analytical solution. The appropriate estimates of remainders
are provided in Section 7, with full mathematical justifications. The extension of the obtained results
to elliptic systems is discussed in Section 8. Some concluding remarks and perspectives are given in
Section 9. Appendix A is devoted to the proof of a classical coercivity result, however the uniformity
with respect to the parameter ε is here highlighted. In Appendix B, the notion of collectively compact
operators used throughout the analysis is recalled. Finally, the weighted and quotient Sobolev spaces
needed for the formulation of appropriate exterior problems, appearing in particular in the construction
of the polarization tensor, are described in Appendix C.

2. Preliminaries and notation

Let Ω be an open and bounded subset of Rn (n ∈ N
∗) and x̂ ∈ Ω be fixed. Given an open, bounded

and smooth subset ω of Rn containing the origin, we define for every ε > 0 the set

ωε(x̂) = x̂+ εω.

Let ρ0 ∈ L∞(Ω) be a given function which takes a constant value ρ̂0 in a neighborhood of x̂ and such
that essinfΩ ρ0 > 0. Moreover, given a constant ρ̂1 > 0, we set for all ε ≥ 0

ρε(x) =

{
ρ0(x) if x ∈ Ω \ ωε,

ρ̂1 if x ∈ Ω ∩ ωε.
(2.1)

For all multi-indices α = (α1, ..., αn) ∈ Nn and any ξ = (ξ1, ..., ξn) ∈ Rn, we denote by

|α| =
n∑

i=1

αi, |ξ| =

(
n∑

i=1

ξ2i

)1/2

, ξα =
n∏

i=1

ξαi

i

the length of α, the norm of ξ and the α-power of ξ, respectively. To avoid any ambiguity, all multi-
indices will be denoted by the letters α, β or γ. The derivative of order α of a distribution u is defined
by

Dαu = ∂α1

1 · · · ∂αn

n u.

Letm ∈ N∗. We consider a family of real constant coefficients (aαβ)|α|=|β|=m satisfying the following
properties.

• Symmetry : it holds for every α, β

aαβ = aβα. (2.2)

• Positivity : for any family of real numbers (yα)|α|=m it holds
∑

|α|=|β|=m

aαβyαyβ ≥ 0. (2.3)

• Uniform ellipticity : there exists κ > 0 such that
∑

|α|=|β|=m

aαβξ
α+β ≥ κ|ξ|2m ∀ξ ∈ R

n. (2.4)

We define the homogeneous operator Aε : H
m
0 (Ω) → H−m(Ω) by

〈Aεu, v〉H−m(Ω),Hm
0

(Ω) =
∑

|α|=|β|=m

∫

Ω

ρεaαβD
αuDβv dx ∀u, v ∈ Hm

0 (Ω). (2.5)

We recall that the space Hm
0 (Ω) is defined as the closure in Hm(Ω) of the set of functions of class C∞

in Ω with compact support, and that it is also the set of functions of Hm(Ω) with vanishing trace on
∂Ω up to the order m− 1, see e.g. [1]. We will later argue that Aε is invertible (see Corollary 3.2).
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We further consider coefficients (bαβ,ε) defined for all ε ≥ 0 and α, β such that |α| ≤ m and
|β| ≤ m− 1. We assume that, for ε small enough,

bαβ,ε − bαβ,0 = qαβχωε

for some coefficients qαβ , and with χωε
the characteristic function of ωε. We define the operator

Bε : H
m
0 (Ω) → H−m(Ω) by

〈Bεu, v〉H−m(Ω),Hm
0

(Ω) =
∑

|α|≤m
|β|≤m−1

∫

Ω

bαβ,εD
αuDβv dx ∀u, v ∈ Hm

0 (Ω).

We assume that, for all ε sufficiently small, the operator Aε+Bε and its adjoint Aε+B
∗
ε are injective.

We will infer (see Proposition 3.3) that Aε + Bε is invertible, as well as its adjoint (the proof is the
same). Henceforth ε will always be implicitly assumed to be small enough.

Given a source f ∈ H−m(Ω) we denote for every ε ≥ 0 by uε ∈ Hm
0 (Ω) the unique solution of

(Aε +Bε)uε = f. (2.6)

The goal of this paper is to analyze the asymptotic behavior of a shape functional of the form j(ε) =
Jε(uε) when ε→ 0.

3. Well-posedness

The space Hm(Ω) is endowed with the standard norm ‖.‖Hm(Ω) and the associated seminorm
|.|Hm(Ω) defined by

‖u‖2Hm(Ω) =
∑

|α|≤m

‖Dαu‖2L2(Ω), |u|2Hm(Ω) =
∑

|α|=m

‖Dαu‖2L2(Ω).

The expression (2.5) obviously defines a symmetric and continuous bilinear form on Hm
0 (Ω). The

coercivity is based on the Lemma below, whose proof can be found in Appendix A.

Lemma 3.1. There exists c > 0 independent of ε such that

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ c|u|2Hm(Ω) ∀u ∈ Hm
0 (Ω).

By the Lax-Milgram theorem and the Poincaré inequality in Hm
0 (Ω) (see [1]) we infer the following

result.

Corollary 3.2. For all f ∈ H−m(Ω) and all ε ≥ 0 there exists a unique u ∈ Hm
0 (Ω) such that

〈Aεu, η〉H−m(Ω),Hm
0

(Ω) = 〈f, η〉 ∀η ∈ Hm
0 (Ω).

Moreover, there exists a constant c independent of ε such that ‖u‖Hm(Ω) ≤ c‖f‖Hm (Ω).

Proposition 3.3. For all f ∈ H−m(Ω) and all ε ≥ 0 there exists a unique u ∈ Hm
0 (Ω) such that

〈(Aε +Bε)u, η〉H−m(Ω),Hm
0

(Ω) = 〈f, η〉 ∀η ∈ Hm
0 (Ω).

Moreover, there exists a constant c independent of ε such that ‖u‖Hm(Ω) ≤ c‖f‖Hm(Ω).

Proof. Since Aε is invertible, we have

(Aε +Bε)u = f ⇐⇒ (I +BεA
−1
ε )Aεu = f,

where I stands for the identity operator of H−m(Ω). By Corollary 3.2, A−1
ε : H−m(Ω) → Hm

0 (Ω) is

uniformly bounded. Next, the operator Bε can be decomposed as Bε = JB̃ε, with J the canonical
embedding of H1−m(Ω) into H−m(Ω) and B̃ε the operator defined algebraically like Bε, but acting

from Hm(Ω) into H1−m(Ω). By construction, B̃ε is uniformly bounded and, by combination of the
Rellich and Schauder theorems, J is compact. It follows that the family of operators {BεA

−1
ε :

H−m(Ω) → H−m(Ω), ε ≥ 0} is collectively compact (see Appendix B).
In order to apply Theorem B.1, let us prove that it is also pointwise sequentially compact. Let (εk)

be a bounded sequence of nonnegative numbers. By the Bolzano-Weierstrass theorem there exists
ε∞ ≥ 0 such that, for a non-relabeled subsequence, εk → ε∞. Let now ϕ ∈ H−m(Ω) be arbitrary
and define ψk = A−1

εk ϕ ∈ Hm
0 (Ω). Then we have ρεk → ρε∞ almost everywhere, which implies by a
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standard argument (see e.g. Theorem 16.4.1 of [10]) that ψk ⇀ ψ∞ := A−1
ε∞ϕ weakly in Hm

0 (Ω). We
now write for any η ∈ Hm

0 (Ω):

〈BεkA
−1
εk
ϕ, η〉H−m(Ω),Hm

0
(Ω) = 〈B∗

εk
η,A−1

εk
ϕ〉H−m(Ω),Hm

0
(Ω).

Lebesgue’s dominated convergence theorem yields that B∗
εkη → B∗

ε∞η strongly in H−m(Ω). As a
product of weakly and strongly convergent sequences we infer:

〈BεkA
−1
εk ϕ, η〉H−m(Ω),Hm

0
(Ω) → 〈B∗

ε∞η,A
−1
ε∞ϕ〉H−m(Ω),Hm

0
(Ω) = 〈Bε∞A

−1
ε∞ϕ, η〉H−m(Ω),Hm

0
(Ω).

This means that BεkA
−1
εk ϕ ⇀ Bε∞A

−1
ε∞ϕ weakly in H−m(Ω), but the convergence is actually strong

by compactness of the sequence. We have thus proved that BεkA
−1
εk → Bε∞A

−1
ε∞ pointwise.

By the Fredholm alternative, the operator I + BεA
−1
ε is invertible for each ε ≥ 0, since it is

injective by assumption. Therefore, by virtue of Theorem B.1, the operators (I + BεA
−1
ε )−1 are

uniformly bounded. Writing that u = A−1
ε (I+BεA

−1
ε )−1f and using again Corollary 3.2 provides the

desired uniform bound. �

We will later need the following variant of Lemma 3.1. The proof, which is very similar, is left to
the reader.

Lemma 3.4. Let ρ be a positive constant. There exists c > 0 such that, whenever ρ̂ ∈ L∞(Rn) is

essentially bounded from below by ρ and Dαu ∈ L2(Rn) for every α with |α| = m, we have

∑

|α|=|β|=m

∫

Rn

ρ̂εaαβD
αuDβu dx ≥ c|u|2Hm(Rn).

As opposed to the previous case where the domain Ω was bounded, in Lemma 3.4 the seminorm
|u|2Hm(Rn) is not a norm and the Poincaré inequality does not hold. Hence, in order to prove the

existence and uniqueness of a solution in Rn, the Lax-Milgram theorem cannot be applied directly.
To address this issue, we introduce in Appendix C a weighted space Wm(Rn) (cf. Eq. (C.1)) and
its quotient space Wm(Rn)/Pm−1 where Pm−1 is the space of polynomials of degree not greater than
m− 1. We have the following extension of the Poincaré inequality (cf. Corollary C.5).

Lemma 3.5. There exists c > 0 such that, for all u ∈ Wm(Rn),

‖u‖Wm(Rn)/Pm−1
≤ c|u|Hm(Rn).

The combination of Lemmas 3.4 and 3.5 will lead to useful existence and uniqueness results for
problems defined in Rn. We recall that the approach with quotient spaces is due to Deny and Lions
as reported by Ciarlet in [23] (see e.g. Theorem 14.1 as applied to the Finite Element Method).

4. Derivation of the general formula

4.1. A preliminary abstract theorem: asymptotic expansion of a cost function. The fol-
lowing theorem provides a general framework for the sensitivity analysis of a cost function associated
with a constraint in variational form. It has been introduced in [4], however we give here a short proof
for completeness.

Theorem 4.1. Let V be a vector space and I be a real interval containing 0. For all ε ∈ I consider
a vector uε ∈ V such that:

aε(uε, η) = 〈fε, η〉 ∀η ∈ V , (4.1)

where aε and fε are a bilinear form on V × V and a linear functional on V, respectively. Consider
also a functional Jε : V → R and a linear functional gε ∈ V ′. Suppose that the following hypotheses
hold:

(1) For all ε ∈ I, there exists vε ∈ V such that

aε(η, vε) = −〈gε, η〉 ∀η ∈ V . (4.2)

(2) There exist real numbers δa, δf and a function ε 7→ ϕ(ε) ∈ R such that, when ε→ 0,

(aε − a0)(u0, vε) = ϕ(ε)δa+ o(ϕ(ε)) , (4.3)

〈fε − f0, vε〉 = ϕ(ε)δf + o(ϕ(ε)) . (4.4)
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(3) There exist real numbers δJ1, δJ2 such that

Jε(uε) = Jε(u0) + 〈gε, uε − u0〉+ ϕ(ε)δJ1 + o(ϕ(ε)) , (4.5)

Jε(u0) = J0(u0) + ϕ(ε)δJ2 + o(ϕ(ε)) . (4.6)

Then we have

Jε(uε)− J0(u0) = ϕ(ε)(δa − δf + δJ1 + δJ2) + o(ϕ(ε)) . (4.7)

Proof. From (4.5) and (4.6), we obtain

Jε(uε)− J0(u0) = 〈gε, uε − u0〉+ ϕ(ε)(δJ1 + δJ2) + o(ϕ(ε)) .

Taking into account (4.2) and the fact that uε − u0 ∈ V , we get

Jε(uε)− J0(u0) = −aε(uε − u0, vε) + ϕ(ε)(δJ1 + δJ2) + o(ϕ(ε))

= −aε(uε, vε) + (aε − a0)(u0, vε) + a0(u0, vε) + ϕ(ε)(δJ1 + δJ2) + o(ϕ(ε)) .

Then (4.1) yields

Jε(uε)− J0(u0) = (aε − a0)(u0, vε) + 〈fε − f0, vε〉+ ϕ(ε)(δJ1 + δJ2) + o(ϕ(ε)) .

Finally, using the hypotheses (4.3) and (4.4), we arrive at

Jε(uε)− J0(u0) = ϕ(ε)(δa + δf) + ϕ(ε)(δJ1 + δJ2) + o(ϕ(ε)) , (4.8)

which leads to the result. �

4.2. A particular class of cost functions. For the sake of simplicity, we focus here on a particular
class of cost functions. It should be noted however that the theory developed here can be readily
extended to other cost functions, on possibly some additional estimates, similarly to [4, 6].

Theorem 4.2. Suppose that the cost function is of form Jε(u) = J(u) with J : Hm
0 (Ω) → R satisfying

J(u + h)− J(u) = 〈g, h〉H−m(Ω),Hm(Ω) +O(‖h‖2) (4.9)

for all u, h ∈ Hm(Ω), where either ‖h‖ = ‖h‖Hm(Ω\N ), with N an arbitrary neighborhood of x̂, or
‖h‖ = ‖h‖Hm−1(Ω). Then (4.5) and (4.6) hold true for ϕ(ε) = εn and δJ1 = δJ2 = 0.

Proof. We already have (4.6) with δJ2 = 0, since Jε is independent of ε. Then (4.9) yields

Jε(uε)− Jε(u0)− 〈g, uε − u0〉 = O(‖uε − u0‖
2). (4.10)

It will be proved in Lemma 7.1 that ‖vε− v0‖ = o(εn/2), with a similar estimate holding for the direct
state, i.e., ‖uε − u0‖ = o(εn/2). Together with (4.10), this implies (4.5) with δJ1 = 0. �

For example purposes, two common cost functionals for which the above theorem applies are
given below, namely the least-square-type and compliance functionals. We still call N an arbitrary
neighborhood of x̂.

• Tracking-type functional

Jε(u) =

∫

D

|u− ud|
2dx , (4.11)

with ud ∈ L2(D) and D ⊂ Ω \ N .
• Compliance functional

Jε(u) =

∫

Ω

fu dx , (4.12)

with fε = f independent of ε (see the example in Section 6.2.2).
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4.3. Strategy of the proof. We consider in the general setting a family of functionals Jε : H
m
0 (Ω) →

R satisfying (4.5) and (4.6) for some gε = g ∈ H−m(Ω), independent of ε, and ϕ(ε) = εn. As
announced in Section 2, we also assume for simplicity that fε = f ∈ H−m(Ω) is independent of ε,
from which Eq. (4.4) is straightforwardly satisfied with δf = 0.

According to Theorem 4.1, in order to obtain the general expression (4.7) of the topological as-
ymptotic expansion of Jε(uε), the main step will be the evaluation of (4.3). This will be achieved in
Lemmas 4.3 and 4.4 of Section 4.5. An important part of the analysis, which consists of the estimation
of the remainders providing the o(ϕ(ε))-term in (4.3), will be deferred to Section 7.

Let us now start the evaluation of Eq. (4.3). Recall first that in the present context the function
spaces are V = Hm

0 (Ω) and V ′ = H−m(Ω), and the bilinear form aε is defined by

aε(u, v) = 〈(Aε +Bε)u, v〉H−m(Ω),Hm
0

(Ω).

Moreover, the background state u0 ∈ Hm
0 (Ω) and the background adjoint state v0 ∈ Hm

0 (Ω) are
respectively defined as the solutions of

(A0 +B0)u0 = f and (A0 +B∗
0)v0 = −g, (4.13)

with B∗
0 the adjoint operator of B0. Moreover, Eq. (4.2) can be rewritten as

(Aε +B∗
ε )vε = −g.

4.4. Preliminary definitions. We introduce the variation

ṽε := vε − v0, (4.14)

and, in order to prove Eq. (4.3), we define the quantity

Va(ε) := (aε − a0)(u0, vε). (4.15)

To proceed with the analysis of the asymptotic behavior of Va(ε) we shall use the spaces Wm(Rn)
and Wm(Rn)/Pm−1 defined in Appendix C. In the course of the analysis we will need some auxiliary
functions. They are defined thereafter.

First, we define hε ∈Wm(Rn)/Pm−1 as the solution of

∑

|α|=|β|=m

∫

Rn

ρ̂εaαβD
αhεD

βη dx = −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ωε

aαβD
αv0D

βη dx (4.16)

for all η ∈Wm(Rn)/Pm−1, with

ρ̂ε(x) =

{
ρ̂0 if x ∈ Rn \ ωε,
ρ̂1 if x ∈ ωε.

(4.17)

We next set

Hε(y) = ε−mhε(x̂ + εy). (4.18)

Then, we define for each γ with |γ| = m the function Ψγ ∈ Wm(Rn)/Pm−1 solution of

∑

|α|=|β|=m

∫

Rn

ρ̂aαβD
αΨγ(y)D

βΦ(y) dy = −(ρ̂1 − ρ̂0)
∑

|β|=m

∫

ω

aγβD
βΦ(y) dy (4.19)

for all Φ ∈ Wm(Rn)/Pm−1, with

ρ̂(y) =

{
ρ̂0 if y ∈ Rn \ ω,
ρ̂1 if y ∈ ω.

(4.20)

Note that the existence and uniqueness of the solutions of (4.16) and (4.19) is a consequence of Lemma
3.4 and Lemma 3.5. We set

H =
∑

|γ|=m

Dγv0(x̂)Ψγ . (4.21)

Finally we define the polarization tensor (pαβ) by its entries

pαβ = |ω|(r − 1)aαβ + kαβ , (4.22)

with

r =
ρ̂1
ρ̂0

(4.23)
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the contrast and

kαγ = (r − 1)
∑

|β|=m

aαβ

∫

ω

DβΨγ(y) dy. (4.24)

4.5. Asymptotic expansion of the bilinear form.

Lemma 4.3. For ε sufficiently small, the following expression of (4.15) holds true:

Va(ε) = εnρ̂0
∑

|α|=|β|=m

pαβD
αu0(x̂)D

βv0(x̂) + εn|ω|
∑

|α|≤m
|β|≤m−1

qαβD
αu0(x̂)D

βv0(x̂) +

5∑

i=1

Ei(ε), (4.25)

with the remainders

E1(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ωε

aαβ
(
Dαu0D

βv0 −Dαu0(x̂)D
βv0(x̂)

)
dx

+
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβ
(
Dαu0D

βv0 −Dαu0(x̂)D
βv0(x̂)

)
dx,

E2(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ωε

aαβ (D
αu0 −Dαu0(x̂))D

β ṽε dx,

E3(ε) =
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αu0D

β ṽε dx,

E4(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ωε

aαβD
αu0(x̂)D

β(ṽε − hε)(y) dy,

E5(ε) = εn(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ω

aαβD
αu0(x̂)D

β(Hε −H)(y) dy.

Proof. We have by definition

Va(ε) =
∑

|α|=|β|=m

∫

Ω

(ρε − ρ0)aαβD
αu0D

βvε dx +
∑

|α|≤m
|β|≤m−1

∫

Ω

(aαβ,ε − aαβ,0)D
αu0D

βvε dx,

hence, for ε small enough,

Va(ε) =
∑

|α|=|β|=m

∫

ωε

(ρ̂1 − ρ̂0)aαβD
αu0D

βvε dx+
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αu0D

βvε dx.

We make the splitting Va(ε) = V 1
a (ε) + V 2

a (ε) with

V 1
a (ε) = (ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ωε

aαβD
αu0D

βv0 dx+
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αu0D

βv0 dx,

V 2
a (ε) = (ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ωε

aαβD
αu0D

β ṽε dx+
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αu0D

β ṽε dx.

• First approximation. With the help of the splitting Dαu0D
βv0 = Dαu0(x̂)D

βv0(x̂) + [Dαu0D
βv0 −

Dαu0(x̂)D
βv0(x̂)] we obviously get

V 1
a (ε) = |ωε|(ρ̂1−ρ̂0)

∑

|α|=|β|=m

aαβD
αu0(x̂)D

βv0(x̂)+|ωε|
∑

|α|≤m
|β|≤m−1

qαβD
αu0(x̂)D

βv0(x̂)+E1(ε). (4.26)
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• Second and third approximation. Similarly we have

V 2
a (ε) =

∑

|α|=|β|=m

∫

ωε

(ρ̂1 − ρ̂0)aαβD
αu0(x̂)D

β ṽε dx+ E2(ε) + E3(ε). (4.27)

• Fourth approximation. We now approximate ṽε. We have for any η ∈ Hm
0 (Ω):

aε(η, ṽε) = aε(η, vε)− aε(η, v0) = −〈g, η〉 − (aε − a0)(η, v0)− a0(η, v0) = −(aε − a0)(η, v0). (4.28)

For ε small enough, we therefore have

∑

|α|=|β|=m

∫

Ω

ρεaαβD
αηDβ ṽε dx+

∑

|α|≤m
|β|≤m−1

∫

Ω

bαβ,εD
αηDβ ṽε dx

= −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ωε

aαβD
αηDβv0 dx−

∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αηDβv0 dx, (4.29)

which suggests to approximate ṽε in (4.27) by hε, solution of (4.16). We arrive at

V 2
a (ε) = (ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ωε

aαβD
αu0(x̂)D

βhε dx+ E2(ε) + E3(ε) + E4(ε).

By the change of variable x = x̂+ εy this can be rewritten

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ω

aαβD
αu0(x̂)D

βHε(y) dy + E2(ε) + E3(ε) + E4(ε). (4.30)

• Fifth approximation. On one hand, plugging hε(x) = εmHε(ε
−1(x−x̂)) and η(x) = εmφε(ε

−1(x−x̂))
in (4.16) yields after the change of variable x = x̂+ εy in both integrals of (4.16)

∑

|α|=|β|=m

∫

Rn

ρ̂(y)aαβD
αHε(y)D

βφε(y) dy = −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫

ω

aαβD
αv0(x̂+ εy)Dβφε(y) dy

(4.31)
for every φε ∈ Wm(Rn)/Pm−1, with ρ̂ defined by (4.20). On the other hand, combining (4.19) and
(4.21) results in

∑

|α|=|β|=m

∫

Rn

ρ̂(y)aαβD
αH(y)DβΦ(y) dy = −(ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ω

aαβD
αv0(x̂)D

βΦ(y) dy (4.32)

for every Φ ∈ Wm(Rn)/Pm−1. On replacing Hε by H + (Hε −H) in (4.30) we obtain

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑

|α|=|β|=m

∫

ω

aαβD
αu0(x̂)D

βH(y) dy +

5∑

i=2

Ei(ε). (4.33)

Plugging (4.21) into the above yields

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑

|α|=|β|=|γ|=m

∫

ω

aαβD
αu0(x̂)D

γv0(x̂)D
βΨγ(y) dy +

5∑

i=2

Ei(ε).

After rearrangement we obtain

V 2
a (ε) = εnρ̂0

∑

|α|=|γ|=m

kαγD
αu0(x̂)D

γv0(x̂) +
5∑

i=2

Ei(ε), (4.34)

with kαβ defined by (4.24). Altogether we arrive at

Va(ε) = εn
∑

|α|=|β|=m

(|ω|(ρ̂1 − ρ̂0)aαβ + ρ̂0kαβ)D
αu0(x̂)D

βv0(x̂) +
5∑

i=1

Ei(ε).

The expression (4.22) of the polarization tensor leads to (4.25). �

The following lemma provides the appropriate estimates for the remainders Ei(ε). This is the core
of the analysis. The proof is given in Section 7.
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Lemma 4.4. Suppose that f and g are of regularity Hs in a neighborhood of x̂ with s > max(0, n2 +
1−m). Then the remainders Ei(ε) in Lemma 4.3 satisfy |Ei(ε)| = o(εn) for each i = 1, 2, 3, 4, 5.

4.6. Topological sensitivity analysis of the cost function. We are now in position to provide
the asymptotic expansion of the cost function.

Theorem 4.5. For every ε sufficiently small let uε be the solution of (2.6). Suppose that the cost
function Jε is such that (4.5) and (4.6) hold true for ϕ(ε) = εn and gε = g independent of ε, and that
f, g are of regularity Hs in a neighborhood of x̂ with s > max(0, n2 + 1−m). Then we have

Jε(uε)− J0(u0)

= εn


ρ̂0

∑

|α|=|β|=m

pαβD
αu0(x̂)D

βv0(x̂) + |ω|
∑

|α|≤m
|β|≤m−1

qαβD
αu0(x̂)D

βv0(x̂) + δJ1 + δJ2


+ o(εn),

(4.35)

with the entries of the polarization tensor (pαβ)|α|=|β|=m given by (4.22), and u0, v0 solutions of
(4.13).

Proof. By Lemmas 4.3 and 4.4 and Definition 5.3, Eq. (4.3) is satisfied with ϕ(ε) = εn and

δa := ρ̂0
∑

|α|=|β|=m

pαβD
αu0(x̂)D

βv0(x̂) + |ω|
∑

|α|≤m
|β|≤m−1

qαβD
αu0(x̂)D

βv0(x̂).

The claim follows from Theorem 4.1. �

Remark 4.6. If the source term f = fε depends on ε, then (4.35) is simply modified by the addition
of the extra term εnδf , which stems from (4.4). If now the function gε which satisfies (4.5) depends
on ε, then (4.28) changes, which results in the additional term 〈gε − g0, η〉 at the right hand side
of (4.29). If ‖gε − g0‖H−m(Ω) = o(εn/2), then we still have |ṽε − hε|Hm(Ω) = o(εn/2) in Lemma 7.1,

therefore Formula (4.35) remains unchanged. But if ‖gε − g0‖H−m(Ω) is of order εn/2, then an extra
term appears in (4.35). For an example we refer to [6] where such a term has been computed for the
Kirchhoff plate problem. Note that the regularity conditions f, g ∈ Hs apply to f0 and g0.

Remark 4.7. Although the condition ρ̂1 > 0 has been used in several places, the topological asymptotic
expansion for Neumann holes can be rigorously obtained by taking the value ρ̂1 = 0 in the computation
of the polarization tensor, provided that (4.19) still admits a solution (necessarily non unique) for this
value. The proof of this claim is rather technical, and has been done for the Laplace operator and the
Kirchhoff plate problem in [4] and [6], respectively. The same idea applies here, therefore we do not
reproduce the proof.

5. A class of degenerate problems

5.1. Degenerate expression of the polarization tensor.

Definition 5.1 (Degenerate polarization tensor). We say that the polarization tensor (4.22) is de-
generate when its entries do not remain bounded when the contrast r tends to zero.

In particular, when the polarization tensor is degenerate, the topological sensitivity for Neumann
holes is not defined, see Remark 4.7. This situation occurs when the cost functional is discontinuous
with respect to the nucleation of a Neumann hole, and it is observed for instance in dimension n = 1
for the Laplacian (see Section 6.2). We will see that it can also occur in higher dimension, but for
higher order operators.

The goal of this section is to give a sufficient condition of degeneracy, as well as to provide an
explicit expression of the polarization tensor in this case. To this aim we introduce the family of
piecewise constant functions ζαγ : Rn → R defined by

ζαγ(x) =





−
ρ̂1 − ρ̂0
ρ̂1

δαγ if x ∈ ω,

0 if x ∈ Rn \ ω,
(5.1)
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with δαγ = 1 if α = γ, δαγ = 0 otherwise. We have for all Φ ∈ Wm(Rn)/Pm−1:

∑

|α|=|β|=m

∫

Rn

ρ̂aαβζαγD
βΦ(y) dy = −(ρ̂1 − ρ̂0)

∑

|β|=m

∫

ω

aγβD
βΦ(y) dy. (5.2)

In the definition of the polarization tensor, (4.19) appeared as a critical step. Accordingly the following
assumption is made.

Assumption 5.2. For any multi-indices γ with |γ| = m, there exists a function Ψγ ∈Wm(Rn)/Pm−1

satisfying ∑

|α|=m

aαβD
αΨγ =

∑

|α|=m

aαβζαγ ∀β, |β| = m. (5.3)

It immediately stems from Assumption 5.2, using (5.2), that Ψγ solves (4.19). Hence (4.24) results
in:

kαγ = (
ρ̂1
ρ̂0

− 1)

∫

ω

∑

|β|=m

aαβD
βΨγ(y) dy = (

ρ̂1
ρ̂0

− 1)

∫

ω

∑

|β|=m

aαβζβγ

= −(
ρ̂1
ρ̂0

− 1)
∑

|β|=m

aαβ
ρ̂1 − ρ̂0
ρ̂1

|ω|δβγ = −aαγ
(ρ̂1 − ρ̂0)

2

ρ̂1ρ̂0
|ω|, (5.4)

with |ω| the n-dimensional Lebesgue measure of ω. Moreover, plugging (5.4) into (4.22) provides the
following closed formula for the polarization tensor.

Proposition 5.3 (Degenerate polarization tensor). If Assumption 5.2 is fulfilled, then we have

pαγ = |ω|(1−
1

r
)aαγ . (5.5)

We also note that, in addition to be degenerate in the sense of Definition 5.1, the polarization
tensor (5.5) is independent of the shape of ω.

5.2. Characterization of a degenerate problem. We shall now give sufficient conditions for As-
sumption 5.2 to be satisfied. To do so, set q = ♯{α ∈ Nn, |α| = m} and define the linear map

Λ : Rq → Rq

(Uα)|α|=m 7→ (Vβ)|β|=m

such that

Vβ =
∑

|α|=m

aαβUα.

We recall the following general result from [20], Theorem 7.1.20.

Theorem 5.4. If P is a homogeneous elliptic (i.e. P (ξ) = 0 ⇒ ξ = 0) polynomial of degree p in Rn,
then the differential operator P (D) has a fundamental solution of the form

E = E0 −Q(x) log |x|, (5.6)

where E0 is homogeneous of degree p− n, C∞ and analytic in Rn \ {0} and Q is a polynomial which
is identically 0 when n > p and is homogeneous of order p − n when n ≤ p. (cf. [20] for its explicit
expression).

Corollary 5.5. Let E be the fundamental solution introduced in Theorem 5.4 and α ∈ Nn be such
that |α| = k. For all R > 1 there exists c > 0 such that, for all x ∈ Rn with |x| > R,

if n > p, |DαE(x)| ≤ c|x|p−n−k,
if n ≤ p, |DαE(x)| ≤ c|x|p−n−k log |x|.

Proof. We first concentrate on the term E0 of the decomposition (5.6). For all (r, υ) ∈ R+ × Rn we
have

E0(rυ) = rp−nE0(υ).

Differentiating k times with respect to υ in the direction (δυ1, ..., δυk) gives

dkE0(rυ)(rδυ1, ..., rδυk) = rp−ndkE0(υ)(δυ1, ..., δυk),
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whereby

‖dkE0(rυ)‖ = rp−n−k‖dkE0(υ)‖.

Choosing now x = rυ, with |υ| = 1 yields

‖dkE0(x)‖ = |x|p−n−k‖dkE0(υ)‖ ≤ c|x|p−n−k,

which in turn implies

|DαE0(x)| ≤ c|x|p−n−k ∀|α| = k.

This provides the result for n > p. We now assume that n ≤ p. Similarly to the previous calculation
we obtain

|DαQ(x)| ≤ c|x|p−n−k ∀|α| = k. (5.7)

Denoting by Ẽ(x) = Q(x) log |x|, we have, for some coefficients cαβ ≥ 0,

DγẼ(x) = DγQ(x) log |x|+
∑

|α|+|β|=|γ|
|β|≥1

cαβD
αQ(x)Dβ(log |x|).

Using (5.7) we get whenever |γ| = k and |x| > R:

|DγẼ(x)| ≤ c|x|p−n−k log |x|+ c
∑

|α|+|β|=k
|β|≥1

|x|p−n−|α||x|−|β| ≤ c|x|p−n−k log |x|.

Thus we get the results. �

We now state and prove one of the main results of our work, which allows to easily determine
whether the polarization tensor associated to an elliptic problem of order 2m is degenerate in the
sense of Definition 5.1.

Theorem 5.6. Suppose that rank(Λ) = 1. Then Assumption 5.2 is fulfilled. In consequence the
polarization tensor admits the expression (5.5), hence it is degenerate.

Proof. Let V = (Vβ)|β|=m ∈ im(Λ) be such that Vβ̄ 6= 0 for some β̄. Since dim(imΛ) = 1 we have
imΛ = span(V ) and

Λ((DαΨ)|α|=m) = V ⇐⇒
∑

|α|=m

aαβ̄D
αΨ = Vβ̄ . (5.8)

For V defined by Vβ =
∑

|α|=m aαβζαγ , γ fixed, a solution to the rightmost equality of (5.8) is given

by

Ψγ = E ∗ Vβ̄ ,

where E is the fundamental solution of the operator
∑

|α|=m aαβ̄D
α. Let us show that the polynomial

P (ξ) =
∑

|α|=m aαβ̄ξ
α associated to this operator is elliptic. Thus, assume that P (ξ) = 0. For

|α| = m we set Uα = ξα, and we define U = (Uα)|α|=m. We have [Λ(U)]β̄ = P (ξ) = 0, and
since Λ(U) ∈ span(V ) (i.e., Λ(U) = λV for some λ) with Vβ̄ 6= 0, we infer Λ(U) = 0. Therefore,∑

|α|=m aαβξ
α = 0 for every β with |β| = m. Multiplying by ξβ and summing over |β| = m, this

implies
∑

|α|=|β|=m aαβξ
α+β = 0. By the uniform ellipticity assumption (2.4) we derive ξ = 0.

Therefore, the fundamental solution of the operator P (D) =
∑

|α|=m aαβ̄D
α satisfies Theorem 5.4.

Using Corollary 5.5 with p = m, it is easily checked that E ∈ Wm(Rn) (defined in Appendix C).
Hence Ψγ ∈ Wm(Rn) as well, and the proof is achieved. �

6. Selected applications

6.1. Examples of operators. In this section we review some classical elliptic operators. As the
polarization tensor only depends on the principal symbol, we restrict our presentation to homogeneous
operators, i.e., we assume that bαβ,ε ≡ 0. In order to check the uniform ellipticity condition, we set

P (ξ) =
∑

|α|=|β|=m

aαβξ
α+β .
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6.1.1. In dimension n = 1. We have |α| = m ⇒ α = (m), hence q = 1 and rank(Λ) = 1 for every
m ≥ 1. This case is always degenerate and the topological asymptotic expansion for ω being the
interval (−1, 1) is given by

Jε(uε)− J0(u0) = ε

[
2ρ̂0(1−

1

r
)
dmu0
dxm

(x̂)
dmv0
dxm

(x̂) + δJ1 + δJ2

]
+ o(ε).

6.1.2. Laplacian in dimension n ≥ 2. We have m = 1, hence q = n. Let (ei)i=1,...,n be the canonical
basis of Rn. The bilinear form is

aε(u, v) =

∫

Ω

ρε∇u.∇vdx =
n∑

i=1

∫

Ω

ρεD
eiuDeivdx,

hence P (ξ) = |ξ|2. In the basis formed by the vectors (ei)i=1,...,n the matrix of Λ is the identity matrix
of order n, hence rank(Λ) = n. This case is not degenerate. The polarization tensor is explicitly known
for ellipses and ellipsoids, see e.g. [3, 4].

6.1.3. Bi-Laplacian. For this operator we have m = 2 and the bilinear form is

aε(u, v) =

∫

Ω

ρε∆u∆vdx.

This yields P (ξ) = |ξ|4. Let us first focus for simplicity on the dimension n = 2. Ordering the family(
α ∈ N2, |α| = 2

)
as ((2, 0), (0, 2), (1, 1)) the matrix of Λ in the canonical basis of R3 is

A =



1 1 0
1 1 0
0 0 0


 .

It is immediately checked that A ≥ 0 and rank(Λ) = rank(A) = 1. This case is thus degenerate. The
same thing occurs in any dimension n, with, using a similar ordering, a matrix having as only nonzero
coefficients an n × n upper left block of ones. Therefore we have in any dimension the topological
asymptotic expansion:

Jε(uε)− J0(u0) = εn
[
ρ̂0|ω|(1−

1

r
)∆u0(x̂)∆v0(x̂) + δJ1 + δJ2

]
+ o(εn).

6.1.4. Kirchhoff plate model. For this fourth order operator (m = 2) in dimension n = 2, the bilinear
form is

aε(u, v) = k

∫

Ω

ρε
(
λ∆u∆v + 2µ∇∇u : ∇∇v

)
dx,

where k = τ3/12, τ > 0 is the thickness of the plate, λ, µ ≥ 0 are the Lamé coefficients. This entails
P (ξ) = k(λ + 2µ)|ξ|4, which is uniformly elliptic provided that either λ > 0 or µ > 0. In the same
basis as in the previous case, the matrix of Λ is

A = k



λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 4µ


 ≥ 0.

We find detA = 16k3µ2(λ + µ), hence rank(A) = 3 provided that µ > 0. The problem is thus
non-degenerate. The polarization tensor for a circular inclusion has been obtained in [6].

6.2. Numerical illustrations.

6.2.1. One-dimensional problem. We consider the compliance functional associated to a second order
one-dimensional equation, where, for 0 < a < 1/2, the source term f has the form:

f(x) =

{
2, 0 < x < a,
0, a ≤ x < 1.

The cost functional associated to the unperturbed problem reads

J0(u0) =

∫ 1

0

f u0 = 2

∫ a

0

u0 ,
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Figure 1. One-dimensional case: Solutions u0(x) and uε(x) for a = 1/4.

with u0 solution to 



−u′′0(x) = 2, 0 < x < a,
−u′′0(x) = 0, a ≤ x < 1,

u0(0) = u0(1) = 0.

The expression of u0 can be easily shown to be

u0(x) =

{
−x2 − a2x+ 2ax, 0 < x < a,

−a2(x− 1), a ≤ x < 1.

The compliance associated to the perturbed problem reads

Jε(uε) =

∫ 1

0

f uε = 2

∫ a

0

uε ,

with uε solution to 



−u′′ε (x) = 2, 0 < x < a,
−u′′ε (x) = 0, a ≤ x < 1

2 − ε,
−u′′ε (x) = 0, 1

2 + ε < x < 1,
u′ε(

1
2 − ε) = u′ε(

1
2 + ε) = 0,

uε(0) = uε(1) = 0.

This means that the domain is topologically perturbed by the introduction of a hole of size 2ε, with
homogeneous Neumann boundary condition. The explicit solution is given by

uε(x) =





−x2 + 2ax, 0 < x < a,
a2, a ≤ x < 1

2 − ε,
0, 1

2 + ε < x < 1.

The solutions u0 and uε are represented in Fig. 6.2.1 for a = 1/4. As we have already mentioned,
this is a degenerate case. In fact, in this simple example the difference between Jε(uε) and J0(u0) is
explicitly given by a jump independent of ε, namely

Jε(uε)− J0(u0) = a4 .

This means that the cost functional Jε(uε) is not continuous with respect ε. Hence, the topological
derivative for a Neumann hole is not defined.

6.2.2. Bi-Laplacian operator. Let us consider three balls B1, Ba, Bε ∈ R2 with centers at the origin
and radii 1, a and ε, respectively, such that ε < a < 1. We consider the compliance functional
associated to the bi-Laplacian operator with source term

f(x) =

{
8 if x ∈ B1 \Ba,
0 if x ∈ Ba.

The cost functional associated to the unperturbed problem reads

J0(u0) =

∫

B1

f u0 = 8

∫

B1\Ba

u0 ,

with u0 solution to 



∆2u0 = 8 in B1 \Ba,
∆2u0 = 0 in Ba,

u0
∂nu0

=
=

0
0

}
on ∂B1.
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(a) solution u0 (b) solution uε

Figure 2. Bi-Laplacian case: solutions u0 and uε ≤ 0.3 for a = 1/2.
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Figure 3. Bi-Laplacian case: profile of the solutions u0(r) and uε(r ≥ 0.1) for a = 1/2.

For the perturbed problem with an homogeneous Neumann condition on the boundary of a hole Bε

the cost functional is

Jε(uε) =

∫

B1

f uε = 8

∫

B1\Ba

uε ,

with uε solution to 



∆2uε = 8 in B1 \Ba,
∆2uε = 0 in Ba \Bε,

uε
∂nuε

=
=

0
0

}
on ∂B1,

∆uε
∂n∆uε

=
=

0
0

}
on ∂Bε.

Using a polar coordinate system (r, θ), we find analytical expressions for both u0 and uε by separation
of variables, as plotted in Fig. 2. Due to the axis-symmetry of the problems, their solutions can be
written in terms of r only, as shown in Fig. 3. In this example the difference between Jε(uε) and
J0(u0) is again given by a jump independent of ε, namely

Jε(uε)− J0(u0) = π
(
a4 − 4a2 log a− 1

)2
.

The cost functional Jε(uε) is not continuous with respect to ε at ε = 0, which confirms that this case
is degenerate.

7. Estimation of the remainders

This section is devoted to the proof of Lemma 4.4. We will use the letter c to denote a generic
positive constant independent of ε.

7.1. Preliminary estimates. Recall that we have defined

ṽε = vε − v0 ∈ Hm
0 (Ω).

We introduce the difference

eε = ṽε − hε ∈ Hm(Ω)/Pm−1,

where hε ∈ Wm(Rn)/Pm−1 solves (4.16). Moreover, we set

ρ̃ε(x) =

{
ρε(x) if x ∈ Ω,

ρ̂0 if x ∈ Rn \ Ω.



15

Lemma 7.1. Let a > 0 be such that the open ball of centre x̂ and radius a, denoted by Ba, is contained
in Ω, and choose an arbitrary δ′ ∈ (0, 1/2). For ε small enough we have that

|hε|Hm(Rn\Ba) ≤ cεn−δ′ , |eε|Hm(Ω) ≤ cεn/2+δ′′ , (7.1)

‖ṽε‖Hm(Ω) ≤ cεn/2, ‖ṽε‖Hm(Ω\Ba) ≤ cεn/2+δ′′ , ‖ṽε‖Hm−1(Ω) ≤ cεn/2+δ′′ (7.2)

for some δ′′ > 0.

Proof. The proof is divided into five steps.
• First step: estimation of |hε|Hm(Rn). By elliptic regularity applied to (4.31) (see Lemmas 3.4
and 3.5) we get ‖Hε‖Wm(Rn)/Pm−1

≤ c, hence in particular

|Hε|Hm(Rn) ≤ c. (7.3)

A change of variable results in
|hε|Hm(Rn) ≤ cεn/2. (7.4)

• Second step: estimation of |hε|Hm(Rn\Ba). We derive from (4.31) that, for all φε ∈Wm(Rn)/Pm−1,

∑

|α|=|β|=m

∫

Rn

ρ̂0aαβD
αHε(y)D

βφε(y) dy (7.5)

=
∑

|α|=|β|=m

∫

Rn

ρ̂aαβD
αHε(y)D

βφε(y) dy +
∑

|α|=|β|=m

∫

ω

(ρ̂0 − ρ̂1)aαβD
αHε(y)D

βφε(y) dy

= (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫

ω

aαβD
αv0(x̂+ εy)Dβφε(y) dy + (ρ̂0 − ρ̂1)

∑

|α|=|β|=m

∫

ω

aαβD
αHε(y)D

βφε(y) dy

= (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫

ω

aαβ (D
αv0(x̂+ εy) +DαHε(y))D

βφε(y) dy. (7.6)

We define the distribution Tε ∈ D′(Rn) by

〈Tε, η〉 = (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫

ω

aαβ (D
αv0(x̂+ εy) +DαHε(y))D

βη(y) dy.

We therefore have, in the sense of distributions,

(−1)m
∑

|α|=|β|=m

ρ̂0aαβD
α+βHε = Tε. (7.7)

We callE the fundamental solution of the differential operator (−1)m
∑

|α|=|β|=m ρ̂0aαβD
α+β , whereby

a solution of (7.7) is given by H•
ε = Tε ∗ E. By elliptic regularity, since clearly Tε ∈ H−m(Rn), we

have H•
ε ∈ Hm

loc(R
n). In addition, if dist(x, ω) > 0 we have the expressions

H•
ε (x) = (ρ̂0 − ρ̂1)

∑

|α|=|β|=m

∫

ω

aαβ (D
αv0(x̂+ εy) +DαHε(y))D

βE(x − y)dy.

and

DγH•
ε (x) = (ρ̂0 − ρ̂1)

∑

|α|=|β|=m

∫

ω

aαβ (D
αv0(x̂+ εy) +DαHε(y))D

γ+βE(x− y)dy. (7.8)

The Cauchy-Schwarz inequality applied to (7.8) implies

|DγH•
ε (x)| ≤ c

∑

|β|=m

(∫

ω

|Dγ+βE(x− y)|2dy

)1/2

.

By Corollary 5.5 with p = 2m we infer that, for any R > 2, δ′ ∈ (0, 1/2) and |γ| = m − k such that
ω ⊂ B(0, R/2),

|DγH•
ε (x)| ≤ c|x|k−n+δ′ ∀|x| > R. (7.9)

This implies in particular that H•
ε ∈Wm(Rn), and by uniqueness that H•

ε is a representative for Hε.
Recalling that hε(x) = εmHε(ε

−1(x − x̂)), we select the representative h•ε(x) = εmH•
ε (ε

−1(x − x̂)),
hence

Dγh•ε(x) = εkDγH•
ε (ε

−1(x− x̂)), |γ| = m− k. (7.10)
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From (7.9) we derive

|Dγhε(x)| ≤ cεk|ε−1(x − x̂)|k−n+δ′ = cεn−δ′ |x− x̂|k−n+δ′ , ∀|x| > εR, |γ| = m− k. (7.11)

Therefore, choosing an arbitrary a > 0, we obtain

‖h•ε‖Wm(Rn\Ba) ≤ cεn−δ′ (7.12)

for any ε small enough. In particular this yields |hε|Hm(Rn\Ba) ≤ cεn−δ′ .
• Third step: estimation of ‖hε‖Hm−1(Ω). From (7.9) we obtain, for |γ| = m− k,

‖DγH•
ε ‖L2(C(R,ε−1R0)) ≤ cε

n
2
−k−δ′ + c (7.13)

and

‖DγH•
ε ‖L2(C(R,2R)) ≤ c,

where C(a, b) stands for the ring of radii a and b. The above inequality together with (7.3) yields,
thanks to the Poincaré inequality, that

‖H•
ε ‖Hm(BR) ≤ c. (7.14)

Combining (7.13) and (7.14) we arrive at

‖DγH•
ε ‖L2(B

ε−1R0
) ≤ c+ cε

n
2
−k−δ′ .

A change of variables provides

‖Dγh•ε‖L2(Ω) ≤ cεk+
n
2 + cεn−δ′ .

For k ≥ 1, as δ′ ∈ (0, n/2), the right hand side of the above inequality is of order O(ε
n
2
+δ′′) for some

δ′′ > 0. It follows that

‖h•ε‖Hm−1(Ω) ≤ cε
n
2
+δ′′ . (7.15)

• Fourth step: estimation of |eε|Hm(Ω). We set

〈Âεu, v〉H−m(Ω),Hm
0

(Ω) =
∑

|α|=|β|=m

∫

Ω

ρ̂εaαβD
αuDβv dx

so that, in view of (4.16) applied to the selected representative h•ε and for a test function η ∈ Hm
0 (Ω)

extended by 0, we have

Âεh
•
ε = −(Âε − Â0)v0.

Recalling that

(Aε +B∗
ε )vε = (A0 +B∗

0)v0 = −g,

we find

(Aε +B∗
ε )ṽε = −(Aε − A0 +B∗

ε −B∗
0 )v0.

This entails, for e•ε = ṽε − h•ε,

(Aε +B∗
ε )e

•
ε = Sε := −(Aε − Âε)h

•
ε −B∗

εh
•
ε − (Aε −A0 − Âε + Â0 +B∗

ε −B∗
0)v0. (7.16)

In addition it holds e•ε = −h•ε on ∂Ω. By Proposition 3.3 and classical arguments of elliptic regularity
and trace theory we infer that

‖e•ε‖Hm(Ω) ≤ c(‖Sε‖H−m(Ω) + ‖h•ε‖Wm(Rn\Ba)).

Yet for every η ∈ Hm
0 (Ω) we have

〈Sε, η〉H−m(Ω),Hm
0

(Ω) = −
∑

|α|=|β|=m

∫

Ω

(ρε − ρ̂ε)aαβD
αh•εD

βη dx −
∑

|α|≤m
|β|≤m−1

∫

Ω

bαβ,εD
αηDβh•ε dx

−
∑

|α|=|β|=m

∫

Ω

(ρε − ρ0 − ρ̂ε + ρ̂0)aαβD
αv0D

βη dx −
∑

|α|≤m
|β|≤m−1

∫

ωε

qαβD
αηDβh•ε dx.

Using (7.12), (7.15), and the fact that ρε − ρ0 = ρ̂ε − ρ̂0 for every ε small enough, we get

〈Sε, η〉H−m(Ω),Hm
0

(Ω) ≤ cε
n
2
+δ′′‖η‖Hm(Ω).
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Using once more (7.12) we arrive at

‖e•ε‖Hm(Ω) ≤ cε
n
2
+δ′′ , (7.17)

• Fifth step: estimates on ṽε. From (7.1) and ṽε = h•ε + e•ε we derive |ṽε|Hm(Ω\Ba) ≤ cε
n
2
+δ′′ . The

Poincaré inequality entails ‖ṽε‖Hm(Ω\Ba) ≤ cε
n
2
+δ′′ . Likewise, (7.4) yields ‖ṽε‖Hm(Ω) ≤ cε

n
2 . We also

derive from (7.15) and (7.17)

‖ṽε‖Hm−1(Ω) ≤ cε
n
2
+δ′′ . (7.18)

All the estimates are now proven. �

We are now in position to estimate the remainders Ei(ε), i = 1, 2, 3, 4, 5 of Lemma 4.3.

7.2. First remainder. Due to the assumed regularity of f and g, it follows that Dαu0 and Dαv0 are
C1 in a neighborhood of x̂. By the mean value inequality we arrive at

|E1(ε)| ≤ cεn+1.

7.3. Second remainder. The Cauchy-Schwarz inequality entails

E2(ε) ≤ cε
√
|ωε||ṽε|Hm(Ω).

Using Lemma 7.1 we straightforwardly get

|E2(ε)| ≤ cεn+1.

7.4. Third remainder. The Cauchy-Schwarz inequality yields

|E3(ε)| ≤ c‖1‖L2(ωε)|ṽε|Hm−1(Ω).

From Lemma 7.1 we infer

|E3(ε)| ≤ cεn+δ′′ .

7.5. Fourth remainder. The Cauchy-Schwarz inequality yields

|E4(ε)| ≤ c‖1‖L2(ωε)|eε|Hm(Ω).

Then Lemma 7.1 entails

|E4(ε)| ≤ cεn+δ′′ .

7.6. Fifth remainder. We begin by observing that, subtracting (4.32) from (4.31), one gets for any
φ ∈Wm(Rn)

∑

|α|=|β|=m

∫

Rn

ρ̂(y)aαβD
α (Hε −H) (y)Dβφdy =

−
∑

|α|=|β|=m

∫

ω

(ρ̂1 − ρ̂0)aαβ (D
αv0(x̂+ εy)−Dαv0(x̂))D

βφ(y) dy.

Applying the Cauchy-Schwarz inequality to the right hand side and using the C1 regularity of v0 we
get ∣∣∣∣∣∣

∑

|α|=|β|=m

∫

Rn

ρ̂(y)aαβD
α (Hε −H) (y)Dβφdy

∣∣∣∣∣∣
≤ cε|φ|Hm(Rn).

By elliptic regularity (see Lemma 3.4) we infer that

|Hε −H |Hm(Rn) ≤ cε.

This implies by the Cauchy-Schwarz inequality that

|E5(ε)| ≤ cεn+1.

8. Generalization to elliptic systems

We explain here how the previous results can be generalized to differential systems. We restrict
ourselves to homogeneous differential operators merely for notational simplicity. We concentrate on
the main changes, that is, the expression of the polarization tensor.
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8.1. General case. We consider now a vector field uε = (u1ε, ..., u
N
ε ) ∈ Hm

0 (Ω)N solution of
∑

ij

∑

α,β

∫

Ω

ρεa
ij
αβD

αuiεD
βηj dx =

∑

i

〈f i, ηi〉 ∀η ∈ Hm
0 (Ω)N .

By convention Latin indices, written as superscripts, range over the set {1, ..., N}, whereas Greek

multi-indices are of length n. The system coefficients (aijαβ) are supposed to satisfy the following
properties.

• Symmetry : it holds for every α, β, i, j

aijαβ = ajiβα. (8.1)

• Positivity : for any family of real numbers (yiα) it holds∑

ij

∑

αβ

aijαβy
i
αy

j
β ≥ 0. (8.2)

• Uniform ellipticity : there exists κ > 0 such that
∑

ij

∑

αβ

aijαβξ
α+βziz̄j ≥ κ|ξ|2m

∑

i

|zi|
2 ∀(ξ, z) ∈ R

n × C
N . (8.3)

Based on these assumptions the asymptotic analysis can be easily generalized, which is left to the
reader. This leads to define the function H = (H1, ..., HN ), instead of (4.32), as the solution of

∑

ij

∑

αβ

∫

Rn

ρ̂(y)aijαβD
αHi(y)DβΦj(y) dy = −(ρ̂1 − ρ̂0)

∑

ij

∑

αβ

∫

ω

aijαβD
αvi0(x̂)D

βΦj(y) dy (8.4)

for every family of functions Φ1, ...,ΦN ∈Wm(Rn)/Pm−1. By linearity, we have

Hi =
∑

l

∑

γ

Dγvl0(x̂)Ψ
il
γ , (8.5)

with Ψil
γ ∈Wm(Rn)/Pm−1 solving, for each γ, l,

∑

ij

∑

αβ

∫

Rn

ρ̂(y)aijαβD
αΨil

γ (y)D
βΦj(y) dy = −(ρ̂1 − ρ̂0)

∑

j

∑

β

∫

ω

aljγβD
βΦj(y) dy (8.6)

for all Φ1, ...,ΦN ∈ Wm(Rn)/Pm−1. The polarization tensor (pijαβ) is defined by

pijαβ = |ω|(r − 1)aijαβ + kijαβ , (8.7)

with

kilαγ = (r − 1)
∑

j

∑

β

aijαβ

∫

ω

DβΨjl
γ (y) dy. (8.8)

Theorem 8.1. Suppose that the cost function Jε is such that (4.5) and (4.6) hold true for ϕ(ε) = εn

and gε = g independent of ε, and that f, g are of regularity Hs in a neighborhood of x̂, s > max(0, n2 +
1−m). Then we have

Jε(uε)− J0(u0) = εn


ρ̂0

∑

ij

∑

αβ

pijαβD
αui0(x̂)D

βvj0(x̂) + δJ1 + δJ2


+ o(εn).

8.2. Degenerate case. We introduce the family of piecewise constant functions ζilαγ : Rn → R defined
by

ζilαγ(x) =





−
ρ̂1 − ρ̂0
ρ̂1

δilαγ if x ∈ ω,

0 if x ∈ Rn \ ω,
(8.9)

with δilαγ = 1 if α = γ and i = l, δilαγ = 0 otherwise. Assumption 5.2 is modified as follows.

Assumption 8.2. For any γ, l, there exist functions Ψil
γ ∈ Wm(Rn)/Pm−1 satisfying

∑

i

∑

α

aijαβD
αΨil

γ =
∑

i

∑

α

aijαβζ
il
αγ ∀β, j. (8.10)

We arrive at the following expression of the polarization tensor.
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Proposition 8.3 (Degenerate polarization tensor). If Assumption 8.2 is fulfilled, then we have

pilαγ = |ω|(1−
1

r
)ailαγ . (8.11)

9. Conclusion

In this work we have derived the general form of the topological asymptotic expansion for a wide
range of linear elliptic operators of order 2m. We have also identified a class of degenerate problems,
for which the closed formulation of the polarization tensor has been obtained. We have given a simple
algebraic criterion to recognize the degenerate cases, and we have shown that a typical example of
degenerate operator is the bi-Laplacian. As a consequence, the physical models whose state equations
obey a PDE involving the bi-Laplacian will exhibit peculiar nucleation properties. By nucleation it
is here meant changes of the physical properties of the body by removing and adding infinitesimal
quantities of different materials with a view to the minimization of a cost function, usually taken as the
energy of the model. As an example, heterogeneities in an elastic continuum can be modeled as small
strain gradient perturbations, which in the scalar setting would mean an energy comprising a term of
the form ǫ|∆u|2, with u standing for the displacement and ǫ a small parameter, and a state equation
thereby involving ∆2 (see [15] where such a problem is treated in the framework of homogenization).
Another example is provided by time-dependent phase-change models involving Cahn-Hilliard type
equations; a recent application in geology which could also fit our setting has been numerically studied
in [21]. Finally we mention that the dislocation problem [26] which involves the bi-Laplacian (as a
simplified model for the incompatibility operator appearing in elasticity of dislocated elastic bodies)
will be further analyzed with a view to the results developed in the present paper.
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no. 290888). This research was initiated on the occasion of the 2011 edition of the workshop on
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Appendix A. Proof of Lemma 3.1

We use the standard notation û for the Fourier-Plancherel transform of u ∈ L2(Rn), z for the
complex conjugate of z and |z| for the modulus of z.

By density, we can assume that u belongs to D(Ω), the set of compactly supported and infinitely
differentiable functions defined in Ω. Next we extend u by zero outside Ω. Due to the positivity
assumption, the function

∑
|α|=|β|=m aαβD

αuDβu is nonnegative. Thus, with ρ = min(essinfΩ ρ0, ρ̂1),

we have

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ ρ
∑

|α|=|β|=m

aαβ

∫

Ω

DαuDβu dx.

Passing to the Fourier transform, we have by the Parseval equality

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ ρ
∑

|α|=|β|=m

aαβ

∫

Rn

D̂αuD̂βudξ = ρ
∑

|α|=|β|=m

aαβ

∫

Rn

ξα+β |û|2dξ.

The uniform ellipticity assumption yields

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ ρκ

∫

Rn

|ξ|2m|û|2dξ.

The expansion of |ξ|2m =
(∑n

i=1 ξ
2
i

)m
results in an expression of the form

|ξ|2m =
∑

|α|=m

cαξ
2α

for some coefficients cα ≥ c > 0. This entails

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ ρκ
∑

|α|=m

cα

∫

Rn

|ξαû|2dξ ≥ ρκc
∑

|α|=m

∫

Rn

|ξαû|2dξ.
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Using again the Parseval equality leads to

〈Aεu, u〉H−m(Ω),Hm
0

(Ω) ≥ ρκc
∑

|α|=m

∫

Ω

|Dαu|2dx = ρκc|u|2Hm(Ω).

Appendix B. Collectively compact operators

Let X be a Banach space and K be a subset of L(X), where L(X) is the set of bounded linear
operators from X into itself. We say that K is collectively compact if the set {Kx, x ∈ X, ‖x‖ ≤
1,K ∈ K} is relatively compact. The following result is a corollary of Theorem 1.6 of [9]. A proof can
be found in [5].

Theorem B.1. Let K be a collectively compact set of bounded linear operators of X. Assume further
that K is pointwise sequentially compact, i.e., for every sequence (Kn) of K there exists a subsequence
(Knp

) and K ∈ K such that Knp
x→ Kx for all x ∈ X. If I −K is invertible for all K ∈ K, then

sup
K∈K

‖(I −K)−1‖ <∞. (B.1)

Appendix C. Weighted and quotient Sobolev spaces

In this appendix we define the functional spaces which provide existence theorems in Rn. The main
result is found in Corollary C.5 which is the restatement of Lemma 3.5. Before arriving at this result
several preliminary lemmas must be proved.

Let Ba be the open ball centered at the origin and of radius a. We will denote by r = |x| the radial
coordinate.

Lemma C.1. Let a > 0, B′
a = Rn \Ba and q ∈ (−∞, 1]. If 2q+n 6= 0, then it holds for all u ∈ D(B′

a)

‖rqu‖L2(B′

a)
≤

2

|2q + n|

∥∥rq+1∇u
∥∥
L2(B′

a)
.

Proof. Let υ ∈ Sn, the unit sphere of Rn. Integrating by parts yields
∫ ∞

a

r2q+n−1u(rυ)2dr = −
2

2q + n

∫ ∞

a

r2q+nu(rυ)∇u(rυ).υdr ≤
2

2q + n

∫ ∞

a

r2q+n|u(rυ)||∇u(rυ)|dr.

We obtain by the Cauchy-Schwarz inequality
∫ ∞

a

r2q+n−1u(rυ)2dr ≤
2

2q + n

(∫ ∞

a

r2q+n−1|u(rυ)|2dr

)1/2(∫ ∞

a

r2q+n+1|∇u(rυ)|2dr

)1/2

.

This implies ∫ ∞

a

r2q+n−1u(rυ)2dr ≤

(
2

2q + n

)2 ∫ ∞

a

r2q+n+1|∇u(rυ)|2dr.

Next, we have

‖rqu‖2L2(B′

a)
=

∫

Sn

∫ ∞

a

r2q+n−1u(rυ)2drdυ

≤

(
2

2q + n

)2 ∫

Sn

∫ ∞

a

r2q+n+1|∇u(rυ)|2drdυ

=

(
2

2q + n

)2 ∥∥rq+1∇u
∥∥2
L2(B′

a)
,

which leads to the desired result. �

Let δ ∈ (0, 1/2) be fixed. For every k ∈ N we introduce the weight functions as follows:

wk(x) = (1 + |x|2)
pk
2 (C.1)

with

pk =





0 if k = 0,
−k − δ if k ≥ 1 and n = 1,

1−
n

2
− k − δ if k ≥ 1 and n ≥ 2.
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Lemma C.2. Let a > 0, B′
a = Rn \Ba, m ∈ N. For all k = 0, ...,m and every u ∈ D(B′

a), we have

sup
|α|=m−k

‖wkD
αu‖L2(B′

a)
≤ ck sup

|α|=m

‖Dαu‖L2(B′

a)
,

where ck is a positive constant.

Proof. The result is obvious for k = 0, thus we assume that k ≥ 1. We treat first the case n ≥ 2. By
induction from Lemma C.1, we infer for |β| = m− k,

‖r1−
n
2
−k−δDβu‖L2(B′

a)
≤ c sup

|α|=m

‖r1−
n
2
−δDαu‖L2(B′

a)
≤ ca1−

n
2
−δ sup

|α|=m

‖Dαu‖L2(B′

a)
.

The desired estimate follows straightforwardly. Suppose now that n = 1. Again by induction from
Lemma C.1, we obtain for |β| = m− k

‖r−k−δDβu‖L2(B′

a)
≤ c sup

|α|=m

‖r−δDαu‖L2(B′

a)
≤ ca−δ sup

|α|=m

‖Dαu‖L2(B′

a)
,

leading to the result. �

For any open subset A of Rn we define the space

Wm(A) =
{
u ∈ D′(A) | ∀k = 0, ...,m, |α| = m− k ⇒ wkD

αu ∈ L2(A)
}
, (C.2)

where the weights are given by (C.1). It is endowed with the norm

‖u‖Wm(A) =




m∑

k=0

∑

|α|=m−k

‖wkD
αu‖2L2(A)



1/2

.

This norm is associated with an inner product 〈., .〉Wm(A), for which it is easily shown that Wm(A) is
a Hilbert space.

We define Wm
0 (A) as the closure of D(A) in Wm(A). Let u ∈Wm(B′

a) and η be a smooth function
such that η = 1 in B2a and η = 0 in B′

3a. Then ηu ∈ Hm(B′
a) and (1−η)u ∈Wm(Rn). This allows us

to define the normal trace of u on ∂Ba of order j, j ≤ m− 1, denoted by ∂jnu. Also, one may prove by
standard arguments (see e.g. [1]) that D(Rn) is dense in Wm(Rn). This implies the following result.

Lemma C.3. We have

Wm
0 (B′

a) =
{
u ∈Wm(B′

a) | ∂
j
nu = 0 ∀j = 0, ...,m− 1

}
.

Proposition C.4. Let H be a closed subspace of Wm(Rn) and ‖.‖H be a norm on H such that, for
some constants c1, c2 >, it holds

c1|u|Hm(Rn) ≤ ‖u‖H ≤ c2‖u‖Wm(Rn) ∀u ∈ H.

Then, on the space H, the norms ‖.‖H and ‖.‖Wm(Rn) are equivalent.

Proof. We must show that there exists a constant c3 such that

‖u‖Wm(Rn) ≤ c3‖u‖H.

By contradiction, we assume that there exists a sequence (up) ∈ H such that, for every p,

‖up‖Wm(Rn) = 1, ‖up‖H <
1

p
. (C.3)

Let η be defined as above. The Leibniz formula provides, for all v ∈Wm(B′
a),

|ηv|Hm(B3a) ≤ c|v|Hm(B3a) + c‖v‖Hm−1(B3a), (C.4)

|(1 − η)v|Hm(B′

2a)
≤ c|v|Hm(B′

2a)
+ c‖v‖Hm−1(B3a). (C.5)

The embedding ofHm(B3a) intoH
m−1(B3a) is compact and the sequence (up) is bounded inHm(B3a).

We still denote by (up) a subsequence such that up → w in Hm−1(B3a). Using Lemma C.2, (C.5) and
the assumptions we get

‖(1− η)(up − uq)‖Wm(B′

2a)
≤ c‖up − uq‖H + c‖up − uq‖Hm−1(B3a).

Moreover, the Poincaré inequality in Hm
0 (B3a) together with (C.4) and the assumptions yield

‖η(up − uq)‖Hm(B3a) ≤ c‖up − uq‖H + c‖up − uq‖Hm−1(B3a).
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Therefore, (ηup) and ((1−η)up) are Cauchy sequences in Hm(B3a) andW
m(B′

2a), respectively. Thus,
there exist (v1, v2) ∈ Hm(B3a) ×Wm(B′

2a) such that ηup → v1 in Hm(B3a) and (1 − η)up → v2 in
Wm(B′

2a). After summation, we infer up → v := v1 + v2 in Wm(Rn). By assumption, this limit holds
also in H. From (C.3) we obtain a contradiction. �

Let Pm−1 be the space of polynomials of degree not greater than m − 1. It is easily checked that
Pm−1 is a subspace of Wm(Rn). The quotient space Wm(Rn)/Pm−1 is endowed with the norm

u 7→ ‖u‖Wm(Rn)/Pm−1
= inf

p∈Pm−1

‖u+ p‖Wm(Rn), (C.6)

where u is an arbitrary representative of its class. Proposition C.4 implies that the seminorm |u|Hm(Rn)

is an equivalent norm to ‖u‖Wm(Rn) on Wm(Rn)/Pm−1. This will be made clear in the following
corollary, which is a restatement of Lemma 3.5, and whose proof is now given.

Corollary C.5. There exists c > 0 such that, for all u ∈Wm(Rn),

‖u‖Wm(Rn)/Pm−1
≤ c|u|Hm(Rn).

Proof. By standard arguments of the calculus of variations the infimum in (C.6) is attained at a
unique point. The Euler-Lagrange equation applied to the problem with squared norm reads for the
minimizer v := u+ p

〈v, p̃〉Wm(Rn) = 0 ∀p̃ ∈ Pm−1,

which is equivalent to
〈v, xα〉Wm(Rn) = 0 ∀|α| ≤ m− 1. (C.7)

Therefore,Wm(Rn)/Pm−1 can be identified with the subspace of the functions v ∈Wm(Rn) satisfying
(C.7). In addition, the seminorm |.|Hm(Rn) is a norm on this space. We then apply Proposition C.4
with H =Wm(Rn)/Pm−1 and ‖u‖H := |u|Hm(Rn). �

Remark C.6. It appears from inspection of the proof that Corollary C.5 remains true if Rn is replaced
by any connected open set containing the origin.
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Laboratório Nacional de Computação Cient́ıfica LNCC/MCTI, Coordenação de Matemática Aplicada e
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