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Abstract

In the present work, the notion of topological sensitivity is extended to the case of
a local perturbation of the properties of the material constitutive of the domain. As a
model example, we consider the problem

−div (αεA∇uε) + βεuε = Fε

in two and three dimensions, where A is a symmetric positive definite matrix and
αε, βε, Fε are functions whose values inside a small subdomain ωε are different from
those of the background medium. An adjoint method is used to determine an asymp-
totic expansion of a given criterion when the diameter of ωε goes to zero.
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1 Introduction

In the last few years, the notion of topological sensitivity has become increasingly widespread
in the shape optimization community. In contrast to the classical techniques of boundary
variation, this tool, among some others like homogenization or level-set based methods,
allows to deal with problems for which the topology (i.e. the number of holes) of the
optimal domain is a priori unknown. The principle consists in studying directly the behavior
of the shape functional of interest when creating a small hole inside the domain. From the
mathematical point of view, given a criterion J (Ω), Ω ∈ Rd (d=2 or 3), a point x0 ∈ Ω and
a fixed domain ω ⊂ Rd, one searches for an asymptotic expansion of the form

J (Ω\(x0 + εω)) − J (Ω) = f(ε)g(x0) + o(f(ε)), (1.1)

where f(ε) is an explicit positive function going to zero with ε. The function g is com-
monly called “topological gradient” or “topological derivative”, and (1.1) the “topological
asymptotic expansion”. Therefore, to minimize the criterion J , one has to create holes at
some points where the topological gradient is negative. This approach was instigated by
Schumacher et al. [22], and then developed by many authors. For more details about the
mathematical aspects and the related numerical procedures, the reader is referred e.g. to
the publications [23, 16, 13, 10, 14, 18, 8].

Another situation, firstly addressed by Cedio-Fengya et al. [11], consists in studying the
influence of the insertion of a small inhomogeneity which is nonempty, but whose constitutive
parameters are different from those of the background medium. Other references on this
topic can be found e.g. in [5, 4, 3, 2, 7, 1]. These works present two major differences with the
previous ones. First, an interface condition holds on the border of the inclusion, instead of
a classical boundary condition (usually of Dirichlet or Neumann type). Second, the authors
being merely concerned by identification problems by means of boundary measurements,
they provide asymptotic formulas either for objective functions specifically designed to this
purpose, or of the solution itself at the location of the sensors. Therefore an adjoint state is
not (at least explicitely) involved.

In the present work, the link between the two above approaches is investigated. A
Helmholtz type state equation with an inhomogeneity in the coefficients is considered. For
a certain class of objective functions, an asymptotic expansion of the form (1.1) is derived
with the help of a relevant adjoint method. Unsurprisingly, a polarization matrix comes in
to characterize the shape of the inhomogeneity, which enables to benefit from the numerous
properties known about them. In particular, this leads to an explicit formulation of g(x0)
in many practical cases. At the limit where the material parameters of the inhomogeneity
tend to zero, the usual topological gradient for a hole with Neumann boundary condition is
rigorously retrieved [13, 8].

The paper is organized as follows. The adjoint method is presented in an abstract
framework in Section 2. Then, for simplicity, the scalar problem is first addressed. It
is described in Section 3, its asymptotic analysis is carried out in Sections 4 and 5, and
the obtained formula is stated and commented in Section 6. For the sake of readability,
the proofs of all intermediate estimates are reported in Section 9. Some examples of cost
functions are exhibited in Section 7. In Section 8, these results are generalized to the vector
case, with the linear elasticity system given as an example. Section 10 is devoted to some
numerical experiments.

2 A preliminary result

The following proposition describes in an abstract framework the adjoint method we will
use to derive the first variation of a given cost function. For the sake of simplicity, real
scalar fields are considered in all the analysis. The adaptation to the complex and vector
cases presents no conceptual difficulty (see e.g. [20, 8] to figure out the peculiarities of the
complex case).
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Proposition 2.1. Let V be a real Hilbert space. For all parameter ε ∈ [0, ε0[, ε0 > 0,
consider a vector uε ∈ V solving a variational problem of the form

aε(uε, v) = ℓε(v) ∀v ∈ V , (2.1)

where aε and ℓε are a bilinear form on V and a linear form on V, respectively. Consider
now a cost function

j(ε) = Jε(uε) ∈ R (2.2)

where, for ε ∈ [0, ε0[, the functional Jε : V → R is Fréchet-differentiable at the point u0.
Suppose that the following hypotheses hold.

1. There exist two numbers δa and δℓ and a function f(ε) ≥ 0 such that, when ε goes to
zero,

(aε − a0)(u0, vε) = f(ε)δa + o(f(ε)), (2.3)

(ℓε − ℓ0)(vε) = f(ε)δℓ + o(f(ε)), (2.4)

lim
ε→0

f(ε) = 0, (2.5)

where vε ∈ V is an adjoint state satisfying

aε(ϕ, vε) = −DJε(u0)ϕ ∀ϕ ∈ V . (2.6)

2. There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + DJε(u0)(uε − u0) + f(ε)δJ1 + o(f(ε)), (2.7)

Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (2.8)

Then the first variation of the cost function with respect to ε is given by

j(ε) − j(0) = f(ε)(δa − δℓ + δJ1 + δJ2) + o(f(ε)).

Proof. We have due to (2.1)

j(ε) − j(0) = [Jε(uε) − J0(u0)] + [aε(uε, vε) − a0(u0, vε)] − [ℓε(vε) − ℓ0(vε)].

Using Equations (2.3) and (2.4) it comes

j(ε) − j(0) = Jε(uε) − J0(u0) + aε(uε − u0, vε) + f(ε)(δa − δℓ) + o(f(ε)).

It follows from (2.7) and (2.8) that

j(ε) − j(0) = DJε(u0)(uε − u0) + aε(uε − u0, vε) + f(ε)(δJ1 + δJ2 + δa − δℓ) + o(f(ε)).

The adjoint equation (2.6) leads to the announced result.

3 Problem formulation

Let Ω be a bounded subdomain of Rd, d = 2 or 3. For simplicity we assume that the
boundary ∂Ω is of class C∞, but this condition could be considerably weakened. We consider
a small subdomain ωε ⊂ Ω of the form ωε = x0+εω, where x0 ∈ Ω and ω ⊂ Rd is a bounded,
smooth (C∞) domain containing the origin.

Let A be a symmetric positive definite matrix and α0, α1, β0, β1 be real numbers. For
every small parameter ε ≥ 0 (i.e. ε is lower that some ε0 > 0), consider the piecewise
constant coefficients

αε(x) =

{

α0 if x ∈ Ω\ωε,
α1 if x ∈ ωε,

βε(x) =

{

β0 if x ∈ Ω\ωε,
β1 if x ∈ ωε,

(3.1)
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and, given F0, F1 ∈ H2(Ω), the function

Fε =

{

F0 in Ω\ωε,
F1 in ωε.

Moreover, we assume that F0 and F1 are Lipschitz continuous in the vicinity of the origin.
We shall investigate two cases.

1. First case: α0 > 0, α1 > 0, β0β1 ≥ 0. We consider a function uε ∈ H1(Ω) solving the
boundary value problem

{

−div (αεA∇uε) + βεuε = Fε in Ω,
uε = 0 on ∂Ω.

(3.2)

2. Second case: α0 > 0, α1 = β1 = 0, F1 = 0. In this extreme situation we are concerned
by the PDE







−div (α0A∇uε) + β0uε = F0 in Ω \ ωε,
uε = 0 on ∂Ω,

A∇uε.n = 0 on ∂ωε.
(3.3)

In order to define the function uε in the whole domain Ω, the above system is comple-
mented by the following

{

−div (A∇uε) = 0 in ωε,
uε ∈ H1(Ω).

(3.4)

We assume that the data are chosen in such a way that Problem (3.2) (resp. Problem (3.3))
admits one and only one solution for every ε < ε0. It is worth mentioning that the Dirichlet
condition on ∂Ω has been chosen merely to fix ideas, but it could be replaced by any other
linear boundary condition provided that the problem of interest remains well-posed.

In both cases, uε satisfies the variational equality (2.1) in the space

V = H1
0 (Ω)

with the bilinear and linear forms

aε(u, v) =

∫

Ω

αεA∇u.∇v dx +

∫

Ω

βεuv dx, (3.5)

ℓε(v) =

∫

Ω

Fεvdx. (3.6)

Therefore, we will be able to carry out a single asymptotic analysis valid for the two cases.
Nevertheless a separate study will be needed for a few intermediate results. We underline
that Proposition 2.1 does not require the unique solvability of (2.1). This situation occurs
in the second case, where the solution is fixed by imposing the additional condition (3.4).
The possible dependence of the result on this choice of the solution is contained in the terms
δJ1 and δJ2 (see comment below).

To enter into the framework of Proposition 2.1, we consider a cost function of the form
(2.2) where the functional Jε : H1

0 (Ω) → R is Fréchet-differentiable at the point u0 and
satisfies the conditions (2.7) and (2.8) for f(ε) = εd. We suppose furthermore that

‖DJε(u0) − DJ0(u0)‖−1,Ω = o(εd/2), (3.7)

and that DJ0(u0) ∈ H2(Ω). In the second case, we consider cost functionals which do not
involve the value of the solution inside ωε, so that the extension (3.4), introduced for the
needs of the analysis, plays no role in the final asymptotics. The reader is referred to Section
7 for some examples.

Let us now proceed to the checking of the hypotheses of Proposition 2.1 for the prob-
lem described above. Note that the straightforward generalization of the standard adjoint
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method to the calculus of an asymptotic expansion is not applicable here, even in the first
case, unless a trick like a truncation technique is used (see [16, 13]). Indeed, an estimate of
the form

(aε − a0)(u, v) = |ωε|[(α1 − α0)A∇u(x0).∇v(x0) + (β1 + β0)u(x0)v(x0)] + o(|ωε|)

would be needed for every u, v ∈ H1
0 (Ω), whereas it obviously holds only for smooth func-

tions.

4 Variation of the bilinear form

In this section we concentrate on the asymptotic analysis of the variation

(aε − a0)(u0, vε) =

∫

ωε

[(α1 − α0)A∇u0.∇vε + (β1 − β0)u0vε] dx. (4.1)

Let us first look into the behavior of the adjoint state vε. The associated PDE depends on
the case under consideration.

1. First case. The classical formulation of the PDE associated to (2.6) reads

{

−div (αεA∇vε) + βεvε = −DJε(u0) in Ω,
vε = 0 on ∂Ω,

(4.2)

which has one and only one solution in our context.

2. Second case. Since in this case Equation (2.6) does not provide an unique solution, we
choose a particular one by enforcing























−div (α0A∇vε) + β0vε = −DJε(u0) in Ω \ ωε,
vε = 0 on ∂Ω,

(A∇vε.n)− = 0 on ∂ωε,
v+

ε = v−ε on ∂ω−
ε ,

−div (A∇vε) = 0 in ωε.

(4.3)

The superscripts + and − indicate that ∂ω is approached from inside and outside,
respectively.

By splitting in (4.1) vε into vε = v0 + (vε − v0) and by introducing the “small” terms (this
statement will be explained and checked later on)

E1(ε) =

∫

ωε

[(α1 − α0)(A∇u0.∇v0 − A∇u0(x0).∇v0(x0) + (β1 − β0)(u0v0 − u0(x0)v0(x0))] dx,

E2(ε) =

∫

ωε

(β1 − β0)u0(vε − v0)dx,

we obtain

(aε−a0)(u0, vε) = εd|ω| [(α1 − α0)A∇u0(x0).∇v0(x0) + (β1 − β0)u0(x0)v0(x0)]+F(ε)+E1(ε)+E2(ε).
(4.4)

We have isolated for convenience the term

F(ε) = (α1 − α0)

∫

ωε

A∇u0.∇(vε − v0)dx,

and we will now study its asymptotic behavior. To begin with, we approximate the variation
vε − v0 by the function

hε(x) = −ε(α1 − α0)H(
x − x0

ε
), (4.5)
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where the function H (independent of ε) is the unique solution of















−div (A∇H) = 0 in ω ∪ (Rd \ ω), (i)
H+ − H− = 0 on ∂ω, (ii)

α1(A∇H.n)+ − α0(A∇H.n)− = A∇v0(0).n on ∂ω, (iii)
H → 0 at ∞. (iv)

(4.6)

Therefore we write

F(ε) = (α1 − α0)

∫

ωε

A∇u0.∇hεdx + E3(ε),

with

E3(ε) = (α1 − α0)

∫

ωε

A∇u0.∇(vε − v0 − hε)dx.

The symmetry of A, the Green formula, and a change of variable yield successively

F(ε) = (α1 − α0)

∫

ωε

∇(u0 − u0(x0)).A∇hεdx + E3(ε)

= (α1 − α0)

∫

∂ωε

(u0 − u0(x0))(A∇hε.n)+ds + E3(ε)

= −εd−1(α1 − α0)
2

∫

∂ω

(u0(x0 + εy) − u0(x0))(A∇H(y).n(y))+ds(y) + E3(ε).

Then, by setting

E4(ε) = −εd−1(α1 − α0)
2

∫

∂ω

(u0(x0 + εy) − u0(x0) −∇u0(x0).εy)(A∇H(y).n(y))+ds(y),

we obtain

F(ε) = −εd(α1 − α0)
2

∫

∂ω

(∇u0(x0).y)(A∇H(y).n(y))+ds(y) + E3(ε) + E4(ε)

= −εd(α1 − α0)
2∇u0(x0).

[∫

∂ω

(A∇H(y).n(y))+yds(y)

]

+ E3(ε) + E4(ε).

Since the function H is continuous across ∂ω, it can be represented with the help of a single
layer potential (see e.g. [12]), namely there exists p ∈ H−1/2(∂ω) such that

∫

∂ω

pdx = 0, (4.7)

H(x) =

∫

∂ω

p(y)

α1 − α0
E(x − y)ds(y), (4.8)

where E denotes the fundamental solution of the operator u 7→ −div (A∇u). The division
of the density by α1 − α0 is meant to simplify some forthcoming expressions. The trivial
case α1 = α0, for which F(ε) = 0, is excluded until the end of this section. It follows from
the jump relation

(A∇H.n)+ − (A∇H.n)− =
p

α1 − α0

together with (4.6 iii) that

(α1 − α0)(A∇H.n)+ = − α0

α1 − α0
p + A∇v0(x0).n.

Hence

F(ε) = εd(α1 − α0)∇u0(x0).

[∫

∂ω

(

α0

α1 − α0
p − A∇v0(x0).n

)

xds

]

+ E3(ε) + E4(ε). (4.9)
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To compute the density p, we replace in (4.6 iii) the normal derivatives by their expressions

(α1 − α0)(A∇H(x).n(x))± = ±p(x)

2
+

∫

∂ω

p(y)(A∇E(x − y).n(x))ds(y).

This leads to the integral equation

α1 + α0

α1 − α0

p(x)

2
+

∫

∂ω

p(y)A∇E(x − y).n(x)ds(y) = A∇v0(x0).n(x) ∀x ∈ ∂ω. (4.10)

According to the classical theory of integral equations of the second kind, Equation (4.10)
admits one and only one solution p ∈ H−1/2(∂ω). Moreover, by linearity, there exists a d×d
matrix Pω,α1/α0

such that
∫

∂ω

pxds = Pω,α1/α0
∇v0(x0). (4.11)

Besides, an integration by parts provides

∫

∂ω

xnT ds = |ω|I, (4.12)

where I is the identity matrix. Gathering (4.4), (4.9), (4.11) and (4.12), we get

(aε − a0)(u0, vε) = εd
[

α0∇u0(x0)
TPω,α1/α0

∇v0(x0) + (β1 − β0)|ω|u0(x0)v0(x0)
]

+

4
∑

i=1

Ei(ε).

We prove in Section 9 that |Ei(ε)| = o(εd) for all i = 1, ..., 4. Therefore Equations (2.3) and
(2.5) hold with

f(ε) = εd,
δa = α0∇u0(x0)

TPω,α1/α0
∇v0(x0) + (β1 − β0)|ω|u0(x0)v0(x0).

5 Variation of the linear form

Let us now turn to the variation

(ℓε − ℓ0)(vε) =

∫

ωε

(F1 − F0)vεdx.

The regularity assumptions on F0 and F1 allow us to rewrite this expression in the form

(ℓε − ℓ0)(vε) = εd|ω|(F1 − F0)(x0)v0(x0) +

6
∑

i=5

Ei(ε)

with

E5(ε) =

∫

ωε

(F1 − F0)(vε − v0)dx,

E6(ε) =

∫

ωε

[(F1 − F0)(x0)v0(x0) − (F1 − F0)v0]dx.

Again it will be proved that |Ei(ε)| = o(εd) for i = 5, 6. Consequently we set

δℓ = |ω|(F1 − F0)(x0)v0(x0).
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6 Variation of the cost function

On account of Proposition 2.1 and the previous statements, the main result of this paper
reads as follows.

Theorem 6.1. For a cost function satisfying (2.7), (2.8) and (3.7) with f(ε) = εd, we have
the asymptotic expansion

j(ε) − j(0) = εd [α0∇u0(x0)
TPω,r∇v0(x0) + (β1 − β0)|ω|u0(x0)v0(x0)

−|ω|(F1 − F0)(x0)v0(x0) + δJ ] + o(εd).
(6.1)

The notations
δJ = δJ1 + δJ2, r =

α1

α0
≥ 0

are used for convenience. For r = 1, the polarization matrix Pω,r is zero. Otherwise, it has
the entries

(Pω,r)ij =

∫

∂ω

pixjds (6.2)

where xj is the jth coordinate of the point x and the density pi associated to the ith basis
vector ei of Rd is the unique solution of the integral equation

r + 1

r − 1

pi(x)

2
+

∫

∂ω

pi(y)A∇E(x − y).n(x)ds(y) = Aei.n(x) ∀x ∈ ∂ω. (6.3)

The notion of polarization matrix has been introduced by Polya, Schiffer and Szegö [19,
21], and since then it has been extensively studied (see e.g. [6, 7] and the references therein).
In particular, it is proved that Pω,r is symmetric positive definite if r > 1, and symmetric
negative definite if r < 1. It can be determined analytically in some cases, otherwise it can
be approximated numerically. We refer e.g. to [17, 15] for some examples. For completeness,
let us recall the results obtained for ellipses and ellipsoids in the case of the Laplacian. Note
that [15] addresses the anisotropic case where α0 and α1 are matrices but, while it can be
readily shown that the polarization matrix constructed in [15] coincides with Pω,r when
γ := α1α

−1
0 = rI, Formula (6.1) is only valid in the case where α0 and α1 are scalars.

1. Ellipse. For ω being an ellipse whose axes with semi-length a and b = ea are parallel
to the main axes of the coordinate system (the general case can be obtained by a
rotation), the polarization matrix reads

Pω,r = |ω|(r − 1)







1 + e

1 + re
0

0
1 + e

e + r






. (6.4)

In particular we have for the unit disc

Pω,r = 2
r − 1

r + 1
|ω|I. (6.5)

2. Ellipsoid. The polarization tensor associated to an ellipsoid with semi-axes (ai)i∈{1,2,3},
oriented along the main axes of the coordinate system reads

Pω,r = |ω|















r − 1

1 − (r − 1)s1
0 0

0
r − 1

1 − (r − 1)s2
0

0 0
r − 1

1 − (r − 1)s3















(6.6)

with

sk = −a1a2a3

2

∫ ∞

0

1

(a2
k + s)

√

(a2
1 + s)(a2

2 + s)(a2
3 + s)

ds.
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Using Maple, we obtain for an ellipsoid of revolution with radius a1 = a2 and height
a3 = ea1, e < 1

s1 = s2 = e

2e
√

1 − e2 + 2 arctan(
e√

1 − e2
) − π

4(1 − e2)3/2
, (6.7)

s3 = −e

2
√

1 − e2 + 2 arctan(
e√

1 − e2
) − π

2(1 − e2)3/2
, (6.8)

and for a sphere

Pω,r = 3
r − 1

r + 2
|ω|I. (6.9)

It is interesting to notice that, in 2D, the polarization matrix has 3 degrees of freedom
(due to the symmetry), which is equal to the number of degrees of freedom of an ellipse.
Hence all inclusions are equivalent (in the sense of the first order topological sensitivity) to
an ellipse. The same observation holds in 3D for ellipsoids.

Another remark concerning ellipses and ellipsoids is that they enable to formally retrieve
the formulas associated to the creation of a crack. Indeed, taking r = 0 (Neumann condition)
and e → 0 in (6.4), (6.7), (6.8) and (6.6) provides

PΣ,0 = −πnnT for a linear crack Σ of length 2 and unit normal n (2D),

PΣ,0 = −8

3
nnT for a planar crack Σ of radius 1 and unit normal n (3D),

which coincide with the polarization matrices derived rigorously in [8] with the help of a
double layer potential.

7 Particular cost functions

The contribution δJ is explicited here for some examples of cost function.

Theorem 7.1. The asymptotic expansion (6.1) holds true for the following cost functions
with the indicated values of δJ .

1. First example. We consider a functional of the form

Jε(u) = J(u|Ω\B(x0,R)), (7.1)

where R is a fixed positive radius and J is C2-Fréchet-differentiable on H1(Ω\B(x0, R)).
Then

δJ = 0.

2. Second example. For the functional

Jε(u) =

∫

Ω

αε|u − ud|2 dx, (7.2)

with ud ∈ H2(Ω), we have

δJ = (α1 − α0)|ω||u0(x0) − ud(x0)|2.

3. Third example. For the functional

Jε(u) =

∫

Ω

αεA∇(u − ud).∇(u − ud) dx, (7.3)

with ud ∈ (H1
0 ∩ H3)(Ω), we have

δJ = α0∇u0(x0)
TPω,r(∇u0(x0)−∇ud(x0))−(α1−α0)|ω|A∇ud(x0).(∇u0(x0)−∇ud(x0)),

where Pω,r is the polarization matrix.
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8 Case of a PDE system

Theorems 6.1 and 7.1 can be straightforwardly generalized to the vector case where uε ∈ Rm,
m ∈ N∗. The changes are the following.

• In every formula, two vectors are multiplied in the sense of the dot product of Rm.

• The polarization Pω,r is given by a tensor of order 4. Denoting by P ij
pq its components,

we have by definition

∇uTPω,r∇v =
∑

i,j,p,q

P ij
pq∂iuj∂pvq.

In this framework, the linear elasticity system is of particular interest for the applications.
The associated polarization tensor, also called elastic moment tensor (EMT), is studied
e.g. in [7]. This book provides notably its expression in 2D for an ellipse. Using standard
notations in elasticity, it reads for instance for a disc in plane strain

∇uTPω,r∇v =
r − 1

κr + 1

κ + 1

2
|ω|

[

2σ(u) : e(v) +
(r − 1)(κ − 2)

κ + 2r − 1
trσ(u)tre(v)

]

,

where u and v stand for any displacement fields, σ(u) and e(v) are the corresponding stress
and strain tensors and

κ =
λ + 3µ

λ + µ

with the Lamé coefficients λ and µ. In plane stress, λ∗ = 2µλ/(λ+ 2µ) must be substituted
for λ. When r = 0 (hole with Neumann boundary condition), we retrieve the topological
sensitivity obtained in [13].

For a complex solution, namely uε ∈ Cm, then the hermitian dot product of this space
is involved. In addition, since the cost function remains real-valued, a real part appears in
front of its asymptotic expansion (again, the reader is referred to [20, 8] for details). Formula
(6.1) becomes

j(ε) − j(0) = εd ℜ[α0(Pω,r∇u0(x0)).∇v0(x0) + (β1 − β0)|ω|u0(x0).v0(x0)
−|ω|(F1 − F0)(x0).v0(x0) + δJ ] + o(εd),

(8.1)

where the dot stands for the hermitian dot product of C
m.

9 Proofs

In this section the letter c stands for any positive constant that may change from place to
place but is always independent of ε. Possibly shifting the origin of the coordinate system, we
suppose for simplicity that x0 = 0. We denote by R some fixed radius such that B(0, R) ⊂ Ω.
For the sake of readability, the duality pairings between H−1 and H1 and between H−1/2

and H1/2 are denoted by integrals.

9.1 Preliminary estimates

Lemma 9.1. Let hε be the function defined by (4.5) and (4.6). We have

‖hε‖0,Ω = o(εd/2), (9.1)

|hε|1,Ω = O(εd/2), (9.2)

|hε|1,Ω\B(0,R) = O(εd). (9.3)

Proof. According to the integral representation (4.8) together with the condition (4.7), we
have that

H(x) =

∫

∂ω

p(y)

α1 − α0
[E(x − y) − E(x)]ds(y).
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It comes

|H(x)| ≤ c sup
y∈∂ω

|E(x − y) − E(x)|

≤ c sup
|z|≤Rω

|∇E(x − z)|,

where Rω denotes a radius such that ω ⊂ B(0, Rω). When |x| tends to infinity, |∇E(x)| =
O(|x|1−d). We deduce that |H(x)| = O(|x|1−d) as well. Similarly we get |∇H(x)| =
O(|x|−d). It follows the estimates

‖H‖0,Ω/ε =

{

O(
√
− ln ε) in 2D,

O(1) in 3D,

|H |1,Ω/ε = O(1),

|H |1,(Ω\B(0,R))/ε = O(εd/2).

A change of variable completes the proof.

Lemma 9.2. We have

‖vε − v0 − hε‖1,Ω = o(εd/2). (9.4)

Proof. Let us define the function

eε = vε − v0 − hε

and the distribution
Φε = −div (αεA∇eε) + βεeε ∈ H−1(Ω).

We have for any test function ϕ ∈ H1
0 (Ω)

∫

Ω

Φεϕdx =

∫

Ω

[αεA∇eε.∇ϕ + βεeεϕ]dx

=

∫

Ω

[αεA∇vε.∇ϕ + βεvεϕ]dx −
∫

Ω

[α0A∇v0.∇ϕ + β0v0ϕ]dx

−
∫

ωε

[(α1 − α0)A∇v0.∇ϕ + (β1 − β0)v0ϕ]dx

−
∫

Ω

[αεA∇hε.∇ϕ + βεhεϕ]dx.

Then, evaluating the first two terms thanks to the adjoint equation, the third one by an
integration by parts and the fourth one by using the definition of hε yields

∫

Ω

Φεϕdx = −((DJε(u0) − DJ0(u0))ϕ

+

∫

ωε

[(α1 − α0)div (A∇v0)(ϕ − ϕ) − (β1 − β0)v0ϕ] dx

−(α1 − α0)

∫

∂ωε

(A∇v0.n)(ϕ − ϕ)ds

+(α1 − α0)

∫

∂ωε

(A∇v0(0).n)ϕds −
∫

Ω

βεhεϕdx.

The constant

ϕ =
1

|ωε|

∫

ωε

ϕdx =
1

|ω|

∫

ω

ϕ(εx)dx
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is introduced for convenience. A rearrangement and a change of variable lead to
∫

Ω

Φεϕdx = −((DJε(u0) − DJ0(u0))ϕ

+

∫

ωε

[(α1 − α0)div (A∇v0)(ϕ − ϕ) − (β1 − β0)v0ϕ] dx

−εd−1(α1 − α0)

∫

∂ω

A[∇v0(εx) −∇v0(0)].n[ϕ(εx) − ϕ]ds −
∫

Ω

βεhεϕdx.

Thanks to the hypotheses, v0 ∈ H4(Ω) ⊂ C2(Ω̄). Using furthermore the Hölder inequality
with some coefficients p and q satisfying 1/p + 1/q = 1, it comes

∣

∣

∣

∣

∫

Ω

Φεϕdx

∣

∣

∣

∣

≤ ‖DJε(u0) − DJ0(u0)‖−1,Ω‖ϕ‖1,Ω

+c‖1‖Lp(ωε)‖ϕ‖Lq(ωε) + cεd|ϕ|
+cεd‖ϕ(εx) − ϕ‖1/2,∂ω + c‖hε‖0,Ω‖ϕ‖0,Ω.

The first term is bounded by the assumption (3.7). The Sobolev imbedding theorem provides
‖ϕ‖Lq(ωε) ≤ c‖ϕ‖1,Ω for all q < +∞ in 2D, q ≤ 6 in 3D. Let us choose such a q greater than
2 and take the corresponding p = q/(q − 1). Another application of the Hölder inequality
with the same coefficients p and q furnishes

|ϕ| ≤ cεd/p−d‖ϕ‖Lq(ωε).

Besides, the trace theorem, the equivalence of the norm and the semi-norm on the subspace
of H1(ω) of the functions with zero mean value and a change of variable bring

‖ϕ(εx) − ϕ‖1/2,∂ω ≤ c‖ϕ(εx) − ϕ‖1,ω ≤ c|ϕ(εx)|1,ω = cε1−d/2|ϕ|1,ωε
.

Hence, using Lemma 9.1 to estimate the last term, we get
∣

∣

∣

∣

∫

Ω

Φεϕdx

∣

∣

∣

∣

= o(εd/2)‖ϕ‖1,Ω + O(εd/p)‖ϕ‖1,Ω + O(εd/2+1)|ϕ|1,ωε
+ o(εd/2)‖ϕ‖0,Ω.

As 1/p > 1/2, it follows that
‖Φε‖−1,Ω = o(εd/2). (9.5)

Let us now come back to the study of the function eε. The two cases have to be treated
separately.

1. First case (α1 > 0). We have
{

−div (αεA∇eε) + βεeε = Φε in Ω,
eε = −hε on ∂Ω,

(9.6)

from which we deduce by uniform elliptic regularity (see [24])

‖eε‖1,Ω ≤ c‖Φε‖−1,Ω + c‖hε‖1/2,∂Ω.

Thanks to (9.5) and Lemma 9.1 it comes the desired estimate.

2. Second case (α1 = β1 = 0). In order to get unique solvability and elliptic regularity
we must restrict (9.6) to the perforated domain Ωε := Ω \ ωε:







−div (α0A∇eε) + β0eε = Φε in Ωε,
eε = −hε on ∂Ω,

Aeε.n = −Av0.n + Av0(0).n on ∂ωε.
(9.7)

According to an estimate proved in [8] we have

‖eε‖1,Ωε
≤ c‖Φε‖−1,Ωε

+ c‖hε‖1/2,∂Ω + cεd/2‖Av0(εx).n + Av0(0).n‖1/2,∂ω.
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The same arguments as in the previous case together with the regularity of v0 near
the origin yield

‖eε‖1,Ωε
= o(εd/2). (9.8)

Inside the hole, we have −div (A∇eε) = 0. Therefore, the standard elliptic regularity
and the trace theorem applied to the transported function eε(εx) lead to

‖eε(εx) + λ‖1,ω ≤ c‖eε(εx) + λ‖1/2,∂ω ≤ c‖eε(εx) + λ‖1,B\ω

for every λ ∈ R and any fixed open set B containing ω. Due to the equivalence of the
norm and semi-norm in the quotient spaces H1(ω)/R and H1(B \ ω)/R it comes

|eε(εx)|1,ω ≤ c|eε(εx)|1,B\ω .

A change of variable brings
|eε|1,ωε

≤ c|eε|1,Ωε
. (9.9)

Thanks to the Poincaré inequality applied to the function eε−Rhε where Rhε denotes
a lifting of the trace of hε on ∂Ω whose support is contained in Ω deprived of a
neighborhood of the origin, we obtain that

‖eε‖1,Ω ≤ ‖eε − Rhε‖1,Ω + ‖Rhε‖1,Ω ≤ c|eε|1,Ω + c‖hε‖1/2,∂Ω.

The proof is completed by the application of Lemma 9.1 and the estimates (9.9) and
(9.8).

Lemma 9.3. We have

‖vε − v0‖0,Ω = o(εd/2), (9.10)

‖vε − v0‖1,Ω = O(εd/2), (9.11)

‖vε − v0‖1,Ω\B(0,R) = o(εd/2). (9.12)

The same estimates hold for the direct state, i.e. by substituting uε and u0 for vε and v0.

Proof. It is a combination of Lemmas 9.1 and 9.2. Since the direct state solves the same
PDE as the adjoint, but with a right hand side whose variation also satisfies ‖Fε−F0‖−1,Ω =
o(εd/2), all the obtained estimates can be extended.

9.2 Proof of Theorem 6.1

We shall prove here that Ei(ε) = o(εd) for i = 1, ..., 6.

1. We obtain straightforwardly from the regularity of u0 by using e.g. the Taylor-Lagrange
inequality the bound

|E1(ε)| ≤ cεd+1.

2. Using again the regularity of u0 we can write that

|E2(ε)| ≤ c

∫

ωε

|vε − v0| dx.

From the Hölder inequality, we obtain that for all p, q ∈ [1, +∞] satisfying 1/p+1/q =
1,

|E2(ε)| ≤ cεd/p‖vε − v0‖Lq(ωε).

Again, we choose q ∈]2, +∞[ in 2D, q ∈]2, 6] in 3D and p accordingly, so that the
Sobolev imbedding theorem provides H1(Ω) ⊂ Lq(Ω) with a continuous imbedding.
Therefore we have

|E2(ε)| ≤ cεd/p‖vε − v0‖1,Ω.

Then Lemma 9.3 implies
|E2(ε)| ≤ cεkd

with k = 1
2 + 1

p = 3
2 − 1

q > 1.
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3. We have

|E3(ε)| ≤ c|u0|1,ωε
|vε − v0 − hε|1,ωε

≤ cεd/2‖u0‖C1(ωε)‖vε − v0 − hε‖1,Ω.

Then Lemma 9.2 yields
|E3(ε)| = o(εd).

4. It comes again straightforwardly from the Taylor-Lagrange inequality that

|E4(ε)| ≤ cεd+1.

5. In the same way as we estimated E2(ε) we obtain

|E5(ε)| = o(εd).

6. The regularity of F1, F0 and v0 in the vicinity of the origin yields immediately

|E6(ε)| ≤ cεd+1,

which ends up the proof. �

9.3 Proof of Theorem 7.1

We shall check that Equations (2.7), (2.8) and (3.7) hold for the proposed examples.

1. In the first example, the functional is independent of ε, so that (2.8) and (3.7) are
automatically satisfied. As J is of class C2, we have

Jε(uε) − Jε(u0) − DJε(u0)(uε − u0) = O(‖uε − u0‖2
1,Ω\B(0,R)

)

which, due to Lemma 9.3, leads to (2.7).

2. Let us now consider the second example.
Expression of Jε(uε) − Jε(u0). We have

Jε(uε) − Jε(u0) = 2

∫

Ω

αε(uε − u0)(u0 − ud)dx +

∫

Ω

αε|uε − u0|2dx.

Using Lemma 9.3 we obtain that

Jε(uε) − Jε(u0) = DJε(u0)(uε − u0) + o(εd),

with

DJε(u0)(ϕ) = 2

∫

Ω

αεϕ(u0 − ud)dx ∀ϕ ∈ H1(Ω).

Hence
δJ1 = 0.

Expression of Jε(u0) − J0(u0). We have

Jε(u0) − J0(u0) =

∫

Ω

αε|u0 − ud|2 dx − α0

∫

Ω

|u0 − ud|2dx

= (α1 − α0)

∫

ωε

|u0 − ud|2dx.

Thanks to the regularity of u0 and ud we obtain easily that

Jε(u0) − J0(u0) = (α1 − α0)|ω|εd|u0(0) − ud(0)|2 + o(εd).
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Thus
δJ2 = (α1 − α0)|ω||u0(0) − ud(0)|2.

Estimation of ‖DJε(u0) − DJ0(u0)‖−1,Ω. We have for all ϕ ∈ H1
0 (Ω)

(DJε(u0) − DJ0(u0))ϕ = 2(α1 − α0)

∫

ωε

ϕ(u0 − ud)dx.

The Hölder inequality, the Sobolev imbedding theorem and the fact that u0 and ud are
continuous in a neighborhood of the origin yield successively, for ε sufficiently small,
1/p + 1/q = 1 and q < +∞ in 2D, q ≤ 6 in 3D,

|(DJε(u0) − DJ0(u0))ϕ| ≤ c‖u0 − ud‖Lp(ωε)‖ϕ‖Lq(ωε)

≤ cεd/p‖ϕ‖1,Ω.

Noticing again that 1/p can be chosen strictly greater that 1/2 proves that Equation
(3.7) holds.

3. It can be easily seen that the third cost functional does not satisfy (2.7). However, this
difficulty can be overcome by constructing an auxiliary functional that coincides with
(7.3) when it is evaluated at the direct state uε but whose general expression meets
the requirements. Indeed, the Green formula leads to the identity

Jε(uε) = J̃ε(uε),

where the functional J̃ε(uε) is defined by

J̃ε(u) =

∫

Ω

Fε(u − ud)dx −
∫

Ω

βεu(u − ud)dx −
∫

Ω

αεA∇ud.∇(u − ud)dx.

The second term can be studied in the same way as functional (7.2). The two other
terms are constant or linear with respect to u, so they can be treated easily. We arrive
at the conclusion that J̃ε satisfies (2.7), (2.8) and (3.7) with

δJ̃1 = 0,

δJ̃2 = |ω|[(F1 − F0)(0)(u0 − ud)(0) − (β1 − β0)u0(0)(u0(0) − ud(0))
−(α1 − α0)A∇ud(0).(∇u0(0) −∇ud(0))].

However, we must take care to the fact that the adjoint state ṽε associated to the
functional J̃ε differs from the adjoint vε associated to Jε. By comparing both adjoint
equations we derive the relation

ṽε = vε + 2u0 − ud − uε.

Then the asymptotic expansion of the criterion j(ε) = Jε(uε) = J̃ε(uε) is given by
Equation (6.1) with ṽ0 = v0+u0−ud substituted for v0 and δJ̃ = δJ̃1+δJ̃2 substituted
for δJ . A rearrangement yields

j(ε) − j(0) = εd[α0∇u0(0)TPω,r∇v0(0) + (β1 − β0)|ω|u0(0)v0(0)

− |ω|(F1 − F0)(0)v0(0) + δJ ] + o(εd) (9.13)

with the announced value of δJ . �

10 A numerical application

The sensitivity formula obtained before is used to identify dielectric objects with the help of
electromagnetic waves and boundary measurements in 2D. Consider an open and bounded
subset Ω of R2 whose boundary Γ is a regular polygon of N sides Γi, i = 1, ..., N . A dielectric
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object whose properties are known may lie inside Ω. On each side of the external boundary
Γ is successively emitted an electromagnetic wave. The problem is modeled as follows:







−div (α∇um
i ) + βum

i = 0 in Ω,
∂num

i − ikum
i = 0 on Γl, l 6= i,

∂num
i − ikum

i = −2ik on Γi,

with i2 = −1. In this system, um
i stands for the vertical component of the electric field for

an H-plane polarization (i.e. the magnetic field vector is contained in the horizontal plane
where the wave propagates and the electric field is vertical), whereas it stands for the vertical
component of the magnetic field for an E-plane polarization (conversely, the electric field is
horizontal and the electric field vertical). The coefficients α and β are piecewise constant
functions of the point x, respectively equal to α1 and β1 inside O (see Table 1), α0 = 1,
β0 = −k2 outside. The letter k denotes the wave number.

We assume that we have at our disposal the measurements

Sm
ij = Sj(u

m
i ) =

∫

Γj

um
i ds, i, j = 1, ..., N.

To detect the actual object thanks to the knowledge of the matrix (Sm
ij )i,j=1,...,N , we look

for the best locations where to insert small inhomogeneities in order to minimize the cost
function

J(u1, ..., uN ) =

N
∑

i=1

N
∑

j=1

∣

∣Sj(ui) − Sm
ij

∣

∣

2
.

For a circular inhomogeneity, according to (8.1), that information is provided by the sensi-
tivity:

g(x) =

N
∑

i=1

ℜ
(

2α0(α1 − α0)

α0 + α1
∇ui(x).∇vi(x) + (β1 − β0)ui(x).vi(x)

)

,

where the N direct states ui and the N adjoint states vi are defined by:







∆ui + k2ui = 0 in Ω,
∂nui − ikui = 0 on Γl, l 6= i,
∂nui − ikui = −2ik on Γi,

{

∆vi + k2vi = 0 in Ω,

∂nvi − ikvi = −2(Sj(ui) − Sm
ij ) on Γj ,

the bar denoting the complex conjugacy.
Figure 1 represents the topological gradient computed in three different configurations

(corresponding to different values of the index of refraction of the sought object) with the
parameters k = 10 and N = 32. The indicated values of µr and ν correspond to an E-plane
polarization. The measurements are simulated numerically. In one iteration, the location of
the object is clearly pointed out by the negative peak of the topological gradient whereas
the observation of the isovalues gives a rough idea of its shape.
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α1 β1

H-plane
1

µr
−ν2k2

µr

E-plane
µr

ν2
−µrk

2

Table 1: PDE coefficients in electromagnetism (ν and µr denote the index of refraction and
the relative permeability of the object, respectively, and k is the wave number).
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Actual object µr = 1, ν = 1.02

µr = 1, ν = 1.2 µr = 1, ν = 1.5

Figure 1: The actual object and two negative isovalues of the topological gradient.




