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Abstract. This paper deals with elliptic optimal control problems for which the control function
is constrained to assume values in {0, 1}. Based on an appropriate formulation of the optimality

system, a semismooth Newton method is proposed for the solution. Convergence results are proved,
and some numerical tests illustrate the efficiency of the method.

1. Introduction

Let D be an open and bounded subset of R
2 with Lipschitz boundary. We investigate the numerical

solution of the optimal control problem:

Minimize
(u,y)∈E×H1

0
(D)

J(u, y) =
1

2

∫

D

(y − y†)2dx + ν

∫

D

udx (1.1)

subject to the state equation
Ey = u. (1.2)

Above the feasible set is defined by

E = {uΩ = χΩ a.e. in D, Ω ⊂ D},

where, for every subset Ω of D, χΩ is the characteristic function of Ω in D. The data (y†, ν) are given
in L2(D) × R. The operator E stands for the (negative) Dirichlet Laplacian, i.e.,

E : H1
0 (D) → H−1(D)

y 7→ [z 7→
∫

D
∇y.∇z].

We denote by yu := E−1u the state and by j(u) := J(u, yu) the reduced cost. Note that, by
a straightforward change of variables, this setting also allows to treat controls of the form uΩ =
χΩu− + (1 − χΩ)u+, where (u−, u+) are given constants.

Due to the binary nature of the control u, the problem in hand falls into the framework of shape
optimization, but as the topology (i.e. the number of connected components of the boundary) of the
targeted domain Ω∗ is a priori unknown, we rather speak of topology optimization. Let us briefly
recall the main classes of methods which can be applied in this case. The most commonly used
approaches rely on relaxed formulations [1, 8]. They are in principle compatible with all the tools of
nonlinear programming, which is a considerable practical advantage, however eventually retrieving a
feasible control is not always easy. The so-called classical shape optimization methods [18, 21], based
on smooth boundary perturbations, offer a good accuracy as to the parameterization of the domains,
but do not allow topological changes. More flexibility is obtained when they are associated with a
level-set domain representation [3, 22]. Nevertheless the nucleation of holes still does not occur in
this framework. The concept of topological derivative [14, 16, 20] has been precisely introduced to
give a quantitative information on the relevance of creating a hole around an arbitrary point of the
domain. Therefore, modern topology optimization techniques often couple the topological derivative
with the shape derivative and / or the use of level sets [2, 11, 6]. A major drawback of these methods
is that they only rely on first order information. To justify this claim, we recall that the topological
derivative guΩ

(x) for a circular hole is defined by

j(uΩ\B̄(x,ρ)) − j(uΩ) = f(ρ)guΩ
(x) + o(f(ρ)), (1.3)

where B̄(x, ρ) = {x, ‖x‖ ≤ ρ} and f is a nonnegative function that tends to zero when ρ → 0. Higher
order topological asymptotic expansions can be derived [9, 10, 13], however the higher order terms
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are numerically quite difficult to be computed. In addition, as the (first order) topological derivative
is generally not bound to vanish at the optimum, the way to use the higher order information is not
obvious. If it vanishes, or gets close to zero as it is the case in least square problems, then the first
order methods often prove inefficient, as pointed out in [15]. In [15] a two steps approach is proposed.
In the first step the cost function is approximated (or rather weighted) by a Gauss-Newton type
method, and in the second step the first order topological derivative of the weighted cost function is
computed.

This paper is based on the remark that the topological optimality conditions can be reformulated
in the form F (u) = 0 with the help of an appropriate function F . Then Newton type methods can be
used to solve the equation in an efficient way. These arguments are subsequently developed according
to the following outline. The optimality conditions associated with Problem (1.1)-(1.2) are specified
in Section 2 and the function F is introduced. After some background material is recalled in Section
3, the proposed method is described and analyzed in Sections 4 through 6. Finally, some numerical
results are presented in Section 7.

2. Optimality conditions

To begin with, let us specify some definitions and notations.

Definition 2.1. We say that a function u ∈ E is a local minimizer of (1.1)-(1.2) if

∃η > 0 ∀u′ ∈ E ‖u′ − u‖L1(D) ≤ η ⇒ j(u′) ≥ j(u).

We say that it is a global minimizer if j(u′) ≥ j(u) for all u′ ∈ E .

Given a function f : D → R and a number a ∈ R, we define the level set [f = a] := {x ∈
D, f(x) = a}. If A is a subset of D we denote by int(A) its interior. We recall that the operator
E : H1

0 (D) → H−1(D) is continuous and invertible, and that H1(D) is continuously imbedded in
Lq(D) for all q ∈ (1,+∞). Consequently, Problem (1.2) admits a unique solution yu ∈ H1

0 (D) for any
u ∈ Lp(D), p > 1. For such p we also define the adjoint state zu as the solution of

Ezu = −(yu − y†) (2.1)

and we set
gu = −zu + ν. (2.2)

We can show [4] that gu is the Fréchet derivative of the mapping u ∈ Lp(D) 7→ j(u), and that it
cöıncides with the topological derivative defined by (1.3) for f(ρ) = L2(B̄(x, ρ)) = πρ2. Here and in
the sequel L2 designates the Lebesgue measure on R

2. The following result is proved in [4].

Proposition 2.2. A necessary condition for u ∈ E to be a local minimizer of (1.1)-(1.2) is
{

gu ≥ 0 in int([u = 0]),
gu ≤ 0 in int([u = 1]).

(2.3)

A sufficient condition for u ∈ E to be a global minimizer of (1.1)-(1.2) is
{

gu ≥ 0 a.e. in [u = 0],
gu ≤ 0 a.e. in [u = 1].

(2.4)

The proposed algorithm relies on an appropriate reformulation of the conditions (2.3) and (2.4).
To this aim we introduce the functional

F : L2(D) → L2(D)
u 7→ u|gu| + min(0, gu),

(2.5)

or equivalently
F : u 7→ u max(0, gu) + (1 − u)min(0, gu).

In view of the remark 2.4 below, F is well defined.

Theorem 2.3. A necessary condition for u ∈ E to be a local minimizer of (1.1)-(1.2) is

F (u) = 0 in int([u = 0]) ∪ int([u = 1]). (2.6)

A sufficient condition for u ∈ L2(D) to be a global minimizer of (1.1)-(1.2) is
{

F (u) = 0 a.e. in D,
L2([gu = 0]) = 0.

(2.7)
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Proof. Assume that (2.3) holds and take x ∈ int([u = 0]). Then gu(x) ≥ 0, which entails F (u)(x) = 0.
Similarly, if x ∈ int([u = 1]), then gu(x) ≤ 0, thus F (u)(x) = 0. Assume now that F (u) = 0 a.e.
in D and take x ∈ D such that F (u)(x) = 0. If gu(x) > 0, then u(x)gu(x) = 0, thus u(x) = 0. If
gu(x) < 0, then (1 − u(x))gu(x) = 0, thus u(x) = 1. On the one hand we deduce that u ∈ E provided
that L2([gu = 0]) = 0. On the other hand we derive (2.4) by contradiction. �

The remainder of the paper is devoted to the solution of the equation F (u) = 0 a.e. in D (subse-
quently simply denoted by F (u) = 0), which, in non-degenerate cases, is a necessary and sufficient
optimality condition for any u ∈ L2(D). As F is non-differentiable, a semismooth Newton method
will be invoked.

Remark 2.4. We recall that, since D is Lipschitz, E−1 maps L2(D) into H3/2(D) (see e.g. [19]).
By using for instance the closed graph theorem, it easy to show that this map is continuous for
these norms. In addition, H3/2(D) is compactly imbedded in L∞(D). It follows that the map
u ∈ L2(D) 7→ (yu, zu) ∈ (L∞(D))2 is linear and compact.

3. Preliminary material

In this section a few results related to semismooth Newton methods and collectively compact sets
of operators are recalled.

3.1. Semismooth Newton methods. Among the many generalizations of the notion of differen-
tiability and the related extensions of Newton’s method, we adopt here the presentation of [17]. The
following definition and theorems are extracted from [17], with a few adaptations of the notations.
Let X,Y be Banach spaces and U be an open subset of X.

Definition 3.1. A function F : U → Y is called slantly differentiable if there exists a mapping
G : U → L(X,Y ), referred to as slanting function, such that

lim
h→0

1

‖h‖
‖F (u + h) − F (u) − G(u + h)h‖ = 0

for all u ∈ U .

Of course, functions which are C1 in the sense of Fréchet are slantly differentiable. The following
theorem provides another particularly useful example.

Theorem 3.2. The mapping max(0, .) : Lq(D) → Lp(D) with 1 ≤ p < q ≤ +∞ is slantly differentiable

on Lq(D) and u 7→ χ[u>0] is a slanting function.

The following theorem asserts the local convergence of the semismooth Newton method applied to
a slantly differentiable function.

Theorem 3.3. Suppose that u∗ solves F (u∗) = 0 and that F is slantly differentiable in an open set U
containing u∗, with slanting function G. If G(u) is nonsingular for all u ∈ U and {‖G(u)−1‖, u ∈ U}
is bounded, then the Newton iteration

un+1 = un − G(un)−1F (un)

converges superlinearly to u∗, provided that ‖u0 − u∗‖ is sufficiently small.

3.2. Collectively compact sets of operators. Let X be a Banach space and K be a subset of L(X),
where L(X) is the set of bounded linear operators from X into itself. We say that K is collectively
compact if the set {Kx, x ∈ X, ‖x‖ ≤ 1,K ∈ K} is relatively compact. Obviously, if K is collectively
compact, every K ∈ K is compact. We recall a part of Theorem 1.6 of [7].

Theorem 3.4. Let K, (Kn)n∈N ∈ L(X). Assume that Kn → K pointwise, {Kn} is collectively

compact, and K is compact. Then (I − K)−1 exists if and only if for some N and all n ≥ N the

operators (I − Kn)−1 exist and are bounded uniformly.

The following result can be seen as a particular case of Theorem 4.5 of [12]. For completeness we
provide a very simple proof using Theorem 3.4.
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Theorem 3.5. Let K be a collectively compact set of bounded linear operators of X. Assume further

that K is pointwise sequentially compact, i.e., for every sequence (Kn) of K there exists a subsequence

(Knp
) and K ∈ K such that Knp

x → Kx for all x ∈ X. If I − K is invertible for all K ∈ K, then

sup
K∈K

‖(I − K)−1‖ < ∞. (3.1)

Proof. Assume that (3.1) is not fulfilled. Then we can construct a sequence (Kn) of K such that

‖(I − Kn)−1‖ ≥
1

n
∀n ∈ N

∗. (3.2)

By compactness of K, there exists a subsequence (Knp
) such that Knp

→ K ∈ K pointwise. Since I−K

is invertible, Theorem 3.4 implies that {(I −Knp
)−1} is bounded uniformly, which is in contradiction

with (3.2). �

4. Description and analysis of the method in function spaces

4.1. Direct application of the semismooth Newton method. A natural idea is to apply the
semismooth Newton method described in Theorem 3.3 to the solution of F (u) = 0. We shall show
that this approach is likely to fail in general.

The direct and adjoint equations (1.2) and (2.1) together with the definition of the sensitivity (2.2)
provide

gu = E−2u − E−1y† + ν. (4.1)

A straightforward calculation shows that F is locally Lipschitz continuous in L2(D). But, in order to
obtain the slant differentiability of F : L2(D) → L2(D), we would need the slant differentiability of the
function g ∈ L∞(D) 7→ max(0, g) ∈ L∞(D), which is not fulfilled. However, Theorem 2.3 could also
well be written in arbitrary Lp spaces, thus let us see what happens if we consider F : Lp(D) → Lq(D)
for 1 ≤ q < p ≤ ∞. We define

G(u) : h 7→ |gu|h +
[

uχ[gu>0] + (1 − u)χ[gu<0]

]

E−2h,

and we obtain

F (u + h) − F (u) − G(u + h)h = u
[

|gu + E−2h| − |gu| − (χ[gu+E−2h>0] − χ[gu+E−2h<0])E
−2h

]

+h
[

χ[gu+E−2h>0] − χ[gu+E−2h<0]

]

E−2h+
[

min(0, gu + E−2h) − min(0, gu) − χ[gu+E−2h<0]E
−2h

]

.

Using successively the Hölder inequality, Theorem 3.2 and the continuity of E−2 : Lp(D) → L∞(D)
it comes

‖F (u + h) − F (u) − G(u + h)h‖Lq(D) ≤ ‖u‖Lp(D)o(‖E
−2h‖L∞(D)) + 2‖h‖L1(D)‖E

−2h‖L∞(D)

+o(‖E−2h‖L∞(D))

≤ o(‖h‖Lp(D)).

Therefore G is a slanting function for F . Assume now that u∗ ∈ Lp(D) solves F (u∗) = 0. As seen in
the proof of Theorem 2.3, we have gu∗(x) > 0 ⇒ u∗(x) = 0 and gu∗(x) < 0 ⇒ u∗(x) = 1, which yields

G(u∗)h = |gu∗ |h.

It appears that G(u∗) is singular, unless we are in finite dimension (we can choose p = q) and gu∗ does
not vanish on D. Consequently the semismooth Newton method applied to the solution of F (u∗) = 0
may hardly converge. Numerically, this is rendered by oscillations which occur in the regions where u
switches between 0 and 1.

4.2. Regularization. To circumvent the phenomenon described above we introduce a family of reg-
ularized functionals. For ε > 0 we define

F ε : L2(D) → L2(D)
u 7→ u(Φε ◦ gu) + min(0, gu),

(4.2)

with

Φε(t) =
√

ε2 + t2. (4.3)
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Obviously, Φε maps L∞(D) into itself, hence F ε is well defined in L2(D). It is also clearly locally
Lipschitz continuous. By observing that the first term in the definition of F ε is C1 and applying
Theorem 3.2 to the second term, we derive that F ε is slantly differentiable with slanting function

Gε(u)h = (Φε ◦ gu)h + u(Φ′
ε ◦ gu)E−2h + χ[gu<0]E

−2h,

that is,

Gε(u) = (Φε ◦ gu)T ε(u), (4.4)

with

T ε(u) = I +
u(Φ′

ε ◦ gu) + χ[gu<0]

Φε ◦ gu
E−2. (4.5)

Let us now address the convergence of the semismooth Newton method applied to F ε. We denote
by 〈., .〉 the canonical inner product of L2(D) and by ‖.‖ the corresponding norm. Given two functions
u, v ∈ L2(D), we use the notation u ≤ v in the pointwise almost everywhere sense. We write u < v if
u ≤ v and u 6= v (i.e. u and v assume different values on a set on nonzero measure).

Lemma 4.1. For all ε > 0, the equation F ε(uε) = 0 admits at least one solution uε ∈ L2(D). In

addition, every function uε ∈ L2(D) solution of F ε(uε) = 0 satisfies

0 ≤ uε ≤ 1. (4.6)

Proof. By definition of F ε it holds

F ε(uε) = 0 ⇔ uε = −
min(0, guε)

Φε ◦ guε

=: Θε(uε). (4.7)

Equivalently we may write

Θε(uε) =







0 if guε ≥ 0,
|guε |

√

ε2 + g2
uε

if guε < 0,

hence 0 ≤ Θε(uε) ≤ 1. We define the convex set C = L2(D, [0, 1]). Clearly, Θε is a continuous
mapping from C into itself. Moreover, for all u ∈ L2(D), it holds gu ∈ H1(D)∩L∞(D) which implies

∇Θε(u) = −
(Φε ◦ gu)χ[gu<0]∇gu − min(0, gu)(Φ′

ε ◦ gu)∇gu

(Φε ◦ gu)2
∈ L2(D)

and subsequently Θε(u) ∈ H1(D). Therefore Θε(C) ⊂ C̃ := H1(D, [0, 1]). Yet, C̃ is a relatively
compact subset of L2(D). By Schauder’s fixed point theorem, there exists some uε ∈ C such that
Θε(uε) = uε.

�

Theorem 4.2. Suppose that uε ∈ L2(D) solves F ε(uε) = 0. Then the Newton iteration

un+1 = un − Gε(un)−1F ε(un)

converges superlinearly to uε in L2(D), provided that ‖u0 − uε‖ is sufficiently small.

Proof. The assumptions we need to check in order to apply Theorem 3.3 are the invertibility of the
slanting function in a neighborhood of uε together with a uniform bound on the norm of the inverse.
For all u ∈ L2(D) we set

wu =
u(Φ′

ε ◦ gu) + χ[gu<0]

Φε ◦ gu
, (4.8)

and for all w ∈ L2(D) we define the operator

K(w) : h ∈ L2(D) 7→ wE−2h ∈ L2(D).

In this way we have

T ε(u) = I + K(wu) ∀u ∈ L2(D).

We proceed in four steps.
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(1) By definition it holds for all w, h ∈ L2(D)

〈(I + K(w))h,E−2h〉 = 〈h,E−2h〉 + 〈wE−2h,E−2h〉.

By the Cauchy-Schwarz inequality we obtain

〈wE−2h,E−2h〉 ≥ 〈min(0, w)E−2h,E−2h〉 ≥ −‖min(0, w)‖L2(D)‖E
−2h‖2

L4(D).

By elliptic regularity (see Remark 2.4), there exists a constant c > 0, depending only on D,
such that ‖E−2h‖L4(D) ≤ c‖E−1h‖L2(D). It comes

〈wE−2h,E−2h〉 ≥ −c2‖min(0, w)‖L2(D)‖E
−1h‖2

L2(D),

and subsequently by symmetry of E−1

〈(I + K(w))h,E−2h〉 ≥ (1 − c2‖min(0, w)‖)‖E−1h‖2
L2(D). (4.9)

We set

W− =

{

w ∈ L2(D), ‖min(0, w)‖ ≤
1

2c2

}

. (4.10)

For all w ∈ W−, we have 1−c2‖min(0, w)‖ ≥ 1/2, thus in view of (4.9) the operator I +K(w)
is injective. In addition, E−2 : L2(D) → L∞(D) is compact, thus K(w) is compact for all
w ∈ L2(D). Then the Fredholm alternative implies that

I + K(w) is invertible for all w ∈ W−. (4.11)

(2) We now examine under which conditions wu ∈ W−. Let u ∈ L2(D) be arbitrary. Using (4.6)
it comes

−|u − uε| ≤ u ≤ 1 + |u − uε|. (4.12)

We write

u(Φ′
ε ◦ gu) + χ[gu<0] = (u(Φ′

ε ◦ gu) + 1)χ[gu<0] + u(Φ′
ε ◦ gu)χ[gu≥0]

=

(

1 − u
|gu|

√

ε2 + g2
u

)

χ[gu<0] + u
|gu|

√

ε2 + g2
u

χ[gu≥0].

Then (4.12) entails

u(Φ′
ε ◦ gu) + χ[gu<0] ≥

(

1 − (1 + |u − uε|)
|gu|

√

ε2 + g2
u

)

χ[gu<0] − |u − uε|
|gu|

√

ε2 + g2
u

χ[gu≥0]

≥ −|u − uε|χ[gu<0] − |u − uε|χ[gu≥0] = −|u − uε|.

We therefore derive from (4.8) that

wu ≥ −
|u − uε|

ε
,

which implies

‖min(0, wu)‖ ≤
1

ε
‖u − uε‖. (4.13)

We denote by U the ball

U =
{

u ∈ L2(D), ‖u − uε‖ <
ε

2c2

}

. (4.14)

It stems from (4.13) and (4.10) that

u ∈ U ⇒ wu ∈ W−. (4.15)

Remembering (4.11), we conclude that T ε(u) is invertible for all u ∈ U .
(3) Let K(w)∗ be the adjoint operator of K(w), namely

K(w)∗ : h ∈ L2(D) 7→ E−2(wh) ∈ L2(D).

Note that the operator E−2 involved above is in fact the adjoint of E−2 : L2(D) → L∞(D)
which, in particular, defines a compact operator from L1(D) into L2(D). The same notation
has been kept since it is an extension of the operator E−2 defined on L2(D). As U is bounded,
there exists M > 0 such that

‖wu‖ ≤ M ∀u ∈ U. (4.16)
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We define the sets

W+ = {w ∈ L2(D), ‖w‖ ≤ M}, (4.17)

W = W− ∩ W+, (4.18)

K = {K(w)∗, w ∈ W}.

We shall check the assumptions of Theorem 3.5 for K. Thanks to the compactness of the
operator E−2 : L1(D) → L2(D), we immediately see that K is collectively compact. Let
now (wn) be a sequence of W . Since W is bounded, convex and closed in L2(D), there
exists a subsequence still denoted by (wn) such that wn ⇀ w ∈ W weakly in L2(D). It
follows that E−2(wnh) ⇀ E−2(wh) weakly in L2(D) for all h ∈ L2(D). By compactness of
E−2 : L1(D) → L2(D), the convergence holds actually in norm (for a subsequence), hence
K(wn)∗h → K(w)∗h. Therefore Theorem 3.5 provides supK∈K ‖(I + K)−1‖ < ∞, that is,
supw∈W ‖(I + K(w)∗)−1‖ < ∞. Passing to the adjoint yields supw∈W ‖(I + K(w))−1‖ < ∞.
Yet, due to (4.15), (4.16), (4.17) and (4.18) it holds u ∈ U ⇒ wu ∈ W . We arrive at

sup
u∈U

‖T ε(u)−1‖ = sup
u∈U

‖(I + K(wu))−1‖ < ∞. (4.19)

(4) Let us now come back to the operator Gε(u). Using (4.4) and the invertibility of T ε(u) we
straightforwardly derive that Gε(u) is invertible for all u ∈ U with

Gε(u)−1 : h 7→ T ε(u)−1(
h

Φε ◦ gu
).

Hence

‖Gε(u)−1‖ ≤
1

ε
‖T ε(u)−1‖, (4.20)

which thanks to (4.19) yields

sup
u∈U

‖Gε(u)−1‖ < ∞.

�

Remark 4.3. Throughout the proof we can see that the role of the regularization parameter ε is
twofold: on the one hand it is directly involved in the definition of U by (4.14), on the other hand it
acts on the conditioning of the system through (4.20).

4.3. Convergence of the regularized solutions. We now examine the behavior of uε when ε goes
to zero.

Lemma 4.4. If F ε(uε) = 0 then

−ε ≤ F (uε) ≤ 0.

Proof. We have

|guε | ≤ Φε ◦ guε =
√

ε2 + g2
uε ≤ ε + |guε |,

which, as uε ≥ 0, yields

F ε(uε) − εuε ≤ F (uε) ≤ F ε(uε).

Using that uε ≤ 1 and F ε(uε) = 0 completes the proof. �

Theorem 4.5. Let (εk)k∈N be a sequence of positive numbers such that εk → 0. For each k consider

a solution uεk ∈ L2(D) of F εk(uεk) = 0 and set yεk = E−1uεk .

(1) There exists a subsequence (εkp
) and u∗ ∈ L2(D, [0, 1]) such that

uεkp
L2(D)
⇀ u∗, yεkp

L2(D)
→ y∗ := E−1u∗,

uεkp → χ[gu∗<0] a.e. in [gu∗ 6= 0].

If L2([gu∗ = 0]) = 0, then

uεkp → u∗ = χ[gu∗<0] a.e. in D and uεkp
L2(D)
→ u∗. (4.21)

In particular, F (u∗) = 0 and (u∗, y∗) is a solution of (1.1)-(1.2).
(2) Every accumulation point u∗ of the sequence (uεk) in L2(D) satisfies F (u∗) = 0.
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Proof. The weak convergence of (uεkp ) stems from (4.6) and the weak closedness of L2(D, [0, 1]). The
strong convergence of (yεkp ) stems from the compactness of the operator E−1 : L2(D) → L2(D).
Analogously gu

εkp strongly converges to gu∗ in L∞(D). The pointwise a.e. convergence in [gu∗ 6= 0]
can be straightforwardly deduced from (4.7). Lebesgue’s dominated convergence theorem ensures the
convergence in L2(D) provided that L2([gu∗ = 0]) = 0. The second assertion of the theorem is a direct
consequence of Lemma 4.4 together with the continuity of F : L2(D) → L2(D). �

5. Finite dimensional version

Proposition 2.2 relies on the concept of topological sensitivity, i.e., on the possibility to perturb
the control variable in an infinitesimal region. Hence it has no equivalent in finite dimension. In
this section we rather discuss the solution of a finite dimensional approximation of the optimality
conditions given by Proposition 2.2, or equivalently Theorem 2.3. Therefore we are concerned with
the solution of F (u) = 0 with

F : R
N → R

N

u 7→ u.|gu| + min(0, gu).
(5.1)

Above, gu is given by (4.1), E is a symmetric and invertible real matrix of order N , y† ∈ R
N , and

ν ∈ R. The dot stands for the coordinatewise product. We introduce the regularized functional

F ε : u 7→ u.Φε(gu) + min(0, gu),

with Φε given by (4.3) and applied coordinatewise. Similarly to the function space setting, F ε is
slantly differentiable on R

N , and we obtain the slanting matrix

Gε(u) = diag(Φε(gu)) + diag(u.Φ′
ε(gu) + χ[gu<0])E

−2. (5.2)

By inspection of the proofs, it appears that Lemma 4.1, Theorem 4.2, Lemma 4.4 and Theorem 4.5
can be readily translated in the finite dimensional setting, which is left to the reader. As a corollary of
Theorem 4.5, we deduce that the equation F (u∗) = 0 admits at least one solution, which is obtained
as an accumulation point of the sequence (uεk).

6. Computational issues

The preceding discussions suggest an algorithm made of two nested loops: an inner loop to solve
F εk(uεk) = 0 for εk > 0 fixed, and an outer loop to let εk go to zero.

Outer loop for solving F (u∗) = 0 starting from uini ∈ L2(D)

• Generate a sequence (εk)k∈N of positive numbers such that limk→∞ εk = 0. Set uε0 = uini.
• Iterate for k = 1, 2, ...

Solve F εk(uεk) = 0 by the semismooth Newton method initialized at uεk−1 (see below).
• Set u∗ = limk→+∞ uεk .

Inner loop for solving F ε(uε) = 0 starting from u0 ∈ L2(D)

• Iterate for n = 0, 1, ...
(1) Compute gun

, F ε(un) and Gε(un) by (4.1), (4.2) and (4.4).
(2) Solve

Gε(un)dn = −F ε(un). (6.1)

(3) Set un+1 = un + dn.
• Set uε = limn→+∞ un.

Above, the algorithm is described in the function space setting, but the discrete version is completely
similar. Let us now comment on the solution of (6.1). At iteration n, the slanting matrix Gε(un) is of
the form Gε(un) = An + BnE−2, where An and Bn are diagonal matrices according to (5.2). Hence
the computation of Gε(un) requires the complete inversion of E. This task has to be done only once,
but it may still be costly in case of fine discretization. In addition, the obtained matrix is full, which
may rise a problem of memory. In fact, one can bypass these difficulties by replacing (6.1) by





An 0 Bn

−I E 0
0 −I E









dn

d′n
d′′n



 =





−F ε(un)
0
0



 . (6.2)
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This corresponds to the Newton iteration applied to the solution of the optimality system






uΦε(g) + min(0, g) = 0,
Ey = u,
E(g − ν) = y − y†.

Although (6.2) is of higher dimension than (6.1), it is sparse and does not require any preliminary
computation. One can reduce its size by reversing completely (4.1). Note that, in the continuous
setting, this is only possible if y† ∈ H1

0 (D), and, at the discrete level, numerical instabilities can be
observed when y†

|∂D 6= 0. In this case, steps (2) and (3) of the inner loop can be replaced by solving
successively

(AnE2 + Bn)en = −F ε(un),
gn+1 = gn + en,
un+1 = E2(gn+1 − ν) + Ey†.

(6.3)

In the numerical experiments which are presented in Section 7, E is chosen as the finite difference
approximation of the Dirichlet Laplacian with the five points stencil. The regularization parameter is
updated by

εk = min(εk−1, a‖guεk−1 ‖rk−1)

with a > 0, 0 < r < 1 and ε0 = a‖guε0 ‖. Obviously, the sequence (εk) is nonincreasing and, due to
the boundedness of {‖gu‖, 0 ≤ u ≤ 1}, it goes to zero as k goes to infinity. The following parameters
are used: a = 10−3, r = 0.5, k = 1, ..., 10. The algorithm is initialized by uini ≡ 0.5. The stopping
criterion of the inner loop is chosen as ‖un+1 − un‖/‖un‖ ≤ b, with b = 10−3.

7. Numerical tests

7.1. First example. The computational domain is the square D = [0, 1] × [0, 1] discretized by a
100 × 100 regular grid. We consider the data

y†(x1, x2) = sin(2πx1) sin(2πx2), ν = 10−2.

As y†
|∂D = 0, we use the reduced version of the algorithm given by (6.3). The functions uεk obtained

at the end of iterations 1 and 10 (of the outer loop) are depicted in Figure 1. The convergence history
of ‖F (uεk)‖2 is shown in Figure 2. Some indications of the CPU time used are reported in Table 1.
They have been obtained on a standard desktop computer with 2.4 GHz processor.
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Figure 1. Example 1, control uε at iterations 1 (left) and 10 (right).

7.2. Second example. The computational domain and the grid are unchanged, but we now choose

y† = E−1χB , ν = 0,

where B is the ball of center (0.5, 0.5) and radius 0.25. It is a difficult problem, because the solution is
(u∗, y∗) = (χB , y†), thus gu∗ ≡ 0. Nevertheless the algorithm still behaves properly, as shown in Figure
3. At iteration 10 we obtain the relative errors ‖y − y†‖/‖y†‖ ≈ 4.5 × 10−7 and ‖u − χB‖/‖χB‖ ≈
1.5 × 10−4.
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Figure 2. Example 1, convergence history of log10 ‖F (uεk)‖2.
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Figure 3. Example 2, control uε at iterations 3 (left) and 10 (right).

7.3. Third example. The computational domain is now the rectangle D = [0, 2] × [0, 1] discretized
by a 200 × 100 regular grid. We choose

y† ≡ 0.05, (a) ν = 10−4, (b) ν = 2 × 10−3.

Since y†
|∂D 6= 0 we do not use the reduced version, but the update (6.2). The obtained results are

displayed in Figure 4. For readability we have represented the level set [uε > 0.5] (in dark), but in
fact, like in the other examples, this region corresponds to the set of points where uε ≈ 1. These
results match those obtained in [4] by a level set method.

Figure 4. Example 3, control uε at iteration 10 for case (a) (left) and case (b) (right).

Example 1 2 3(a) 3(b)

Nb. of d.o.f. 9801 9801 19701 19701
CPU time (s) 13.3 17.1 49.2 48.6

Table 1. Some computational data.

7.4. Concluding remarks. With regards to the tests performed, the proposed algorithm appears to
be competitive in comparison with first order topology optimization methods. In particular, it is still
efficient when the topological derivative at the optimum is zero, which allows to be optimistic as to
its application to reconstruction problems. It is also compatible with the use of primal-dual Newton
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type methods in topology optimization with constraints, which offers an alternative to Uzawa type
methods [5].
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[20] J. Soko lowski and A. Żochowski. On the topological derivative in shape optimization. SIAM J. Control Optim.,
37(4):1251–1272 (electronic), 1999.

[21] J. Soko lowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity analysis.
[22] M. Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. Comput. Methods

Appl. Mech. Engrg., 192(1-2):227–246, 2003.
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