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Abstract

This paper deals with the use of the topological derivative in detection problems
involving waves. In the first part, a framework to carry out the topological sensi-
tivity analysis in this context is proposed. Arbitrarily shaped holes and cracks with
Neumann boundary condition in 2 and 3 space dimensions are considered. In the
second part, a numerical example concerning the treatment of ultrasonic probing
data in metallic plates is presented. With moderate noise in the measurements, the
defects (air bubbles) are detected and satisfactorily localized by means of a single
sensitivity computation.

Key words: topological sensitivity, topological gradient, topological derivative,
nondestructive testing.

1 Introduction

Inspection problems can generally be seen as shape inversion problems. If
techniques borrowed from shape optimization are now commonly accepted as
good theoretical candidates to address shape inversion problems, their ap-
plications to inspection problems such as nondestructive testing or medical
imaging are today relatively restricted. The main reason is that, in such prob-
lems, the possibility to handle topology changes is crucial. Therefore the use
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of the topological derivative concept, which directly deals with the variable
“topology”, seems to be particularly well-suited. We recall the basic principles
of this approach, introduced by Schumacher [24], Sokolowski and Zochowski
[25] in structural optimization. Consider a cost function J (Ω) = JΩ(uΩ) where
uΩ is the solution of a system of partial differential equations defined in the
domain Ω ⊂ R

N , N = 2 or 3, a point x0 ∈ Ω and a fixed open and bounded
subset ω of R

N containing the origin. The “topological asymptotic expansion”
is an expression of the form

J (Ω \ (x0 + ρω)) − J (Ω) = f(ρ)g(x0) + o(f(ρ)), (1)

where f(ρ) is a positive function tending to zero with ρ. Therefore, to minimize
J (Ω), we have interest to remove matter where the “topological gradient”
(also called “topological derivative”, or “topological sensitivity”) g is negative.

A general framework enabling to calculate the topological asymptotic expan-
sion for a large class of shape functionals has been worked out by Masmoudi
[18]. It is based on an adaptation of the adjoint method and a domain trun-
cation technique providing an equivalent formulation of the PDE in a fixed
function space. Using this framework, Garreau, Guillaume, Masmoudi and
Sididris [12,14,15] have obtained the topological asymptotic expansions for
several problems associated with linear and homogeneous differential opera-
tors. For such operators, but with a different approach, more general shape
functionals are considered in [19]. The link between the shape and the topolog-
ical derivatives has been established by Feijóo et al [10,21]. This gives rise to a
generic method for deriving the latter. However, it seems rather restricted to
circular or spherical holes. For the first time a topological sensitivity analysis
for a non-homogeneous operator was performed in [23]. The case of a circu-
lar hole with a Dirichlet condition imposed on its boundary was considered.
For completeness, we point out that extensive research efforts using related
techniques have been done in the context of reconstruction problems from
boundary measurements (see e.g. [1,2,3,7,28] among others). In contrast to
our approach, they do not deal with an explicit cost function. Instead, the
sensitivity of the PDE solution uΩ at the location of the measurements (or
its integral against special test functions) is computed. Then the data are in-
terpreted by signal processing methods. In addition, those works are focused
on the detection of inhomogeneities, which means that the material density
inside the inclusions is nonzero.

The problem of interest in this paper is related to nondestructive testing by
means of ultrasounds in the context of elastodynamics. The governing equa-
tions at a fixed frequency involve a non-homogeneous differential operator of
the form

u 7→ div (A∇u) + k2u, (2)

where A is a symmetric positive definite tensor. For such a problem, the topo-
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logical asymptotic expansion is determined in dimensions 2 and 3 with respect
to the creation of an arbitrarily shaped hole and an arbitrarily shaped crack on
which a Neumann boundary condition is prescribed. For the sake of simplicity,
the analysis is presented for the Helmholtz operator (A = I), but it applies
similarly to any operator of the form (2). We introduce an adjoint method
that takes into account the variation of the function space, so that a domain
truncation is not needed. This formalism brings several technical simplifica-
tions, notably for the study of criteria depending explicitly on Ω, for which
the truncation necessitates to transport the cost function in the fixed domain
(see [14]). Similar results have been obtained in [6]. However, the analysis is
not done there in a rigorous mathematical framework. Furthermore, the crack
problem is not addressed and less general cost functionals are considered.

The rest of the present paper is organized as follows. The adjoint method is
presented in Section 2. The framework of the study is described in Section
3. The topological asymptotic analysis for a hole and a crack are carried out
in Sections 4 and 5, respectively, the intermediate proofs being reported in
Section 8. The case of some particular cost functions is examined in Section
6. Section 7 is devoted to numerical experiments that highlight the relevance
of the topological sensitivity approach for nondestructive testing applications.

2 An appropriate adjoint method

In this section, the adjoint method is generalized to a class of problems for
which the state variable belongs to a function space that depends on the
control variable. Let (Vρ)ρ≥0 be a family of Hilbert spaces on the complex
field such that

V0 ⊂ Vρ ∀ρ ≥ 0.

For all ρ ≥ 0, let aρ be a sesquilinear and continuous form on Vρ and let lρ be
a semilinear and continuous form on Vρ. We assume that, for all ρ ≥ 0, the
variational problem











uρ ∈ Vρ,

aρ(uρ, v) = lρ(v) ∀v ∈ Vρ

(3)

admits a unique solution. We make the following assumption.

Hypothesis 1 For all ρ ≥ 0, there exist on Vρ a sesquilinear and continuous
form ãρ and a semilinear and continuous form l̃ρ such that

ãρ(u0, v) = l̃ρ(v) ∀v ∈ Vρ. (4)

3



Consider now a criterion j(ρ) = Jρ(uρ) ∈ R where, for all ρ ≥ 0, the function
Jρ is differentiable in the following sense: there exists a linear and continuous
form on Vρ denoted by Lρ such that

Jρ(u0 + h) − Jρ(u0) = ℜLρ(h) + o(‖h‖Vρ
). (5)

The notation ℜz stands for the real part of the complex number z. Further-
more, we assume that, for all ρ ≥ 0, the adjoint problem











vρ ∈ Vρ,

aρ(u, vρ) = −Lρ(u) ∀u ∈ Vρ

(6)

admits an unique solution. We make the two following additional hypotheses.

Hypothesis 2 There exist two complex numbers δa and δl and a function
f : R+ → R+ such that, when ρ tends to zero,

f(ρ) −→ 0,

(aρ − ãρ)(u0, vρ) = f(ρ)δa + o(f(ρ)),

(lρ − l̃ρ)(vρ) = f(ρ)δl + o(f(ρ)).

Hypothesis 3 There exists a real number δJ such that

Jρ(uρ) − J0(u0) = ℜLρ(uρ − u0) + f(ρ)δJ + o(f(ρ)).

Then, the asymptotic expansion of j(ρ) is given by the theorem below.

Theorem 1 If hypotheses 1, 2 and 3 hold, then

j(ρ) − j(0) = f(ρ)ℜ(δa − δl + δJ) + o(f(ρ)).

Proof. Using Equation (3) and Hypothesis 1, we obtain

j(ρ) − j(0) = Jρ(uρ) − J0(u0) + ℜ(aρ − ãρ)(u0, vρ) + ℜaρ(uρ − u0, vρ)

−ℜ(lρ − l̃ρ)(vρ).

Hypotheses 2 and 3 and Equation (6) yield

j(ρ) − j(0) =ℜLρ(uρ − u0) + f(ρ)δJ + f(ρ)ℜδa −ℜLρ(uρ − u0)

−f(ρ)ℜδl + o(f(ρ)),

from which we deduce the announced result. �
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3 The topological sensitivity problem

3.1 Problem formulation

Let Ω be an open, bounded and connected subset of R
N , N = 2 or 3, with

smooth boundary Γ. We assume for simplicity that Γ is piecewise of class C∞,
but this hypothesis could be considerably weakened. We consider a function
u0 ∈ H1(Ω) satisfying the state equations











∆u0 + k2u0 = 0 in Ω,

∂nu0 = Su0 + σ on Γ.
(7)

Here, n denotes the outward unit normal of Γ, k ∈ C, S ∈ L(H1/2(Γ), H−1/2(Γ)),
namely the space of continuous linear maps from H1/2(Γ) to H−1/2(Γ), and
σ ∈ H−1/2(Γ). For a given x0 ∈ Ω and a small parameter ρ > 0, we denote by
Ωρ the perturbed domain. We shall address two situations.

• In the case of a perforation, we consider a fixed open and bounded subset
ω of R

N containing the origin and whose boundary Σ is the union of two
graphs of functions of class C1 from R

N−1 into R (this technical hypothesis
could also be weakened). We define ωρ = x0 +ρω, Σρ = ∂ωρ and Ωρ = Ω\ωρ

(see Figure 1 (a)).
• In the case of the creation of a crack, we consider a bounded manifold Σ

of dimension N − 1 which can be represented as the graph of a function of
class C1 from R

N−1 into R. We define Σρ = x0 + ρΣ and Ωρ = Ω \ Σρ (see
Figure 1 (b)).

ρ ρ

ρω
Ω

Γ

Σ

+
−

n

ρ

ρ

Γ
Σ

Ω

(a) (b)

Figure 1. The perturbed domain: (a) perforated domain, (b) cracked domain.
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Possibly changing the coordinate system, we suppose henceforth that x0 = 0.
In both cases, the new function uρ ∈ H1(Ωρ) is assumed to solve the system



























∆uρ + k2uρ = 0 in Ωρ,

∂nuρ = Suρ + σ on Γ,

∂nuρ = 0 on Σρ.

(8)

3.2 Well-posedness

The variational formulation of System (8) writes in the standard form (3) with

Vρ = H1(Ωρ),















aρ(u, v) =
∫

Ωρ

(∇u.∇v − k2uv̄)dx−
∫

Γ
Suv̄ds ∀u, v ∈ Vρ,

lρ(v) =
∫

Γ
σv̄ds ∀v ∈ Vρ.

(9)

For the sake of readability, the duality pairing between H− 1

2 (Γ) and H
1

2 (Γ)
is denoted by an integral. The bar stands for the complex conjugate. This
formulation applies also to Problem (7) when ρ = 0, with Ω0 = Ω.

To insure well-posedness, we suppose that S verifies the following hypothesis.

Hypothesis 4 The operator S is split into S = S0 + S1 where

• S0 ∈ L(H
1

2 (Γ), H− 1

2 (Γ)) and satisfies

(1)
∫

Γ
S0ϕψ̄ds =

∫

Γ
S0ψϕ̄ds ∀ϕ, ψ ∈ H

1

2 (Γ),

(2)
∫

Γ
S0ϕϕ̄ds ≤ 0 ∀ϕ ∈ H

1

2 (Γ),

(3)
{
∫

Γ
S0ϕϕ̄ds = 0

}

⇒ {ϕ = 0 on a piece of nonzero measure of Γ} ,
• S1 ∈ L(H

1

2 (Γ), H− 1

2 (Γ)) and is a compact operator.

Here are two examples of such an operator.

• When Ω is a disc (2D case), k ∈ {k ∈ C,ℑk < 0}∪R
∗
+ and S is the Dirichlet-

to-Neumann operator corresponding to the Helmholtz equation on R
2 \ Ω

with Sommerfeld condition at infinity, it is proved in [17] that Hypothesis
4 holds.

• If the boundary condition on Γ is of the form ∂nu− ik′u = Φ, where k′ ∈ C

(transmission condition), then Su = ik′u and Hypothesis 4 is automatically
checked by setting S0 = 0.
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We assume moreover the following uniqueness property, which is satisfied in
the above cases (see e.g. [17] and [23]).

Hypothesis 5 There exists ρ0 > 0 such that for all ρ ≤ ρ0,

{aρ(u, v) = 0 ∀v ∈ Vρ} ⇒ {u = 0} ,

{aρ(u, v) = 0 ∀u ∈ Vρ} ⇒ {v = 0} .

We consider a cost function Jρ differentiable in the sense of Equation (5). The
proof of the following proposition uses standard arguments (see e.g. [23]).

Proposition 1 If Hypotheses 4 and 5 are satisfied, then for all ρ ≤ ρ0

• the sesquilinear form aρ satisfies the inf-sup conditions

inf
u 6=0

sup
v 6=0

|aρ(u, v)|
‖u‖Vρ

‖v‖Vρ

> 0, inf
v 6=0

sup
u 6=0

|aρ(u, v)|
‖u‖Vρ

‖v‖Vρ

> 0,

• Problem (3) and Problem (6) are uniquely solvable.

Remark 2 The boundary condition on Γ adopted here has been chosen merely
as an example. It could be replaced without any influence on the topological
asymptotic analysis by any condition insuring that Problems (3) and (6) are
well-posed.

We wish now to apply Theorem 1 in this context. The imbedding V0 ⊂ Vρ is
defined by the restriction u ∈ V0 7→ u|Ωρ

∈ Vρ. To simplify the writing, the
function u|Ωρ

will be still denoted by u. The analysis will be carried out in
three steps:

(1) define ãρ and l̃ρ such that Hypothesis 1 holds,
(2) determine the function f(ρ) and the complex numbers δa and δl such that

Hypothesis 2 holds,
(3) for some examples of cost function, determine δJ such that Hypothesis 3

holds.

For the first two points, the cases of a perforation and of a crack will be studied
separately (Sections 4 and 5). Then, according to Theorem 1, the topological
gradient at the origin will be

g(0) = ℜ(δa − δl + δJ).

A shift of the coordinate system will provide immediately g(x) for any x ∈ Ω.
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4 Creation of a hole

4.1 Formulation of the initial problem in the perforated domain

We focus on the case of a perforation, i.e., Ωρ = Ω \ ωρ, Σρ = ∂ωρ. For all
ρ ≥ 0, we define the sesquilinear form

bρ(u, v) =
∫

ωρ

(∇u.∇v − k2uv̄)dx ∀u, v ∈ H1(ωρ).

Using the Poincaré inequality, it is easy to check that, when ρ is sufficiently
small, namely k diam (ωρ) < 1, bρ is coercive on H1

0 (ωρ). For such a ρ and
ϕ ∈ H1/2(Σρ), let hϕ

ρ ∈ H1(ωρ) be the solution of











∆hϕ
ρ + k2hϕ

ρ = 0 in ωρ,

hϕ
ρ = ϕ on Σρ.

(10)

We set for all u, v ∈ H1(Ωρ)











ãρ(u, v) = aρ(u, v) + bρ(h
u
ρ , h

v
ρ),

l̃ρ(v) = lρ(v).

In the notation hu
ρ , the letter u has been kept for simplicity to denote the trace

of u on Σρ. It is easy to check that Equation (4) holds.

Since l̃ρ = lρ, we have by construction δl = 0. For obtaining the general
expression of the topological asymptotic, it remains to determine the first
order expansion with respect to ρ of the quantity (aρ − ãρ)(u0, vρ).

4.2 Preliminary calculus

We set
wρ = vρ − v0.

In order to estimate wρ, we need the following assumption on the right hand
side of the adjoint equation.

Hypothesis 6 There exists a function L of regularity C0 ∩H1 in the vicinity
of the origin such that for all u ∈ H1(Ω) and for all ρ small enough,

L0(u) = Lρ(u|Ωρ
) +

∫

ωρ

Ludx. (11)
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Let S∗ ∈ L(H1/2(Γ), H−1/2(Γ)) be the adjoint operator of S, defined by

∫

Γ
Sϕψ̄ds =

∫

Γ
S∗ψϕ̄ds ∀ϕ, ψ ∈ H

1

2 (Γ). (12)

The function wρ solves:


























∆wρ + k̄2wρ = 0 in Ωρ,

∂nwρ = −∂nv0 on Σρ,

∂nwρ = S∗wρ on Γ.

(13)

For all ρ ≥ 0 and ϕ ∈ H1/2(Σρ), we define the function lϕρ ∈ H1(ωρ) as the
solution to











∆lϕρ = 0 in ωρ,

lϕρ = ϕ on Σρ.

Some manipulations based on the Green formula and the equality hu0

ρ = u0

lead to:

(aρ − ãρ)(u0, vρ) = −
∫

Σρ

∂nv0(u0 − u0(0))ds+
∫

ωρ

L(u0 − u0(0))dx

+ k2u0(0)
∫

ωρ

v0dx−
∫

Σρ

∂nl
wρ
ρ (u0 − u0(0))ds+ k2

∫

ωρ

u0l
wρ
ρ dx. (14)

4.3 Asymptotic analysis

4.3.1 Approximation of wρ

A suitable approximation of wρ is expected to be provided by the function

pρ(x) = ρP

(

x

ρ

)

,

where the function P ∈W 1(RN \ ω̄), independent of ρ, is the solution of


























∆P = 0 in R
N \ ω̄,

P = O(1/rN−1) at ∞,

∂nP (x) = −∇v0(0).n on Σ.

(15)

We recall that, for an exterior domain ω′ = R
N \ ω̄, the Sobolev space W 1(ω′)

is defined by (see e.g. [16,13,9]):

W 1(ω′) =

{

u ∈ D′(ω′),
u

(1 + r) ln r
∈ L2(ω′) and ∇u ∈ L2(ω′)

}

in 2D,
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W 1(ω′) =
{

u ∈ D′(ω′),
u

1 + r
∈ L2(ω′) and ∇u ∈ L2(ω′)

}

in 3D.

The decay P = O(1/rN−1) stems from the fact that ∇v0(0).n has zero mean.
The function P can be written as the single layer potential:

P (x) =
∫

Σ
λ(y)E(x− y)ds(y) ∀x ∈ R

N \ ω̄, (16)

where the density λ ∈ H
−1/2
0 (Σ) is the unique solution of the boundary integral

equation

λ(x)

2
+
∫

Σ
λ(y)∂nx

E(x− y)ds(y) = −∇v0(0).n ∀x ∈ Σ. (17)

We recall the expression of the fundamental solution of the Laplace operator

E(x) =















1

2π
ln |x| in 2D,

− 1

4π|x| in 3D,

and the definition of the space

H
− 1

2

0 (∂ω) =
{

u ∈ H− 1

2 (∂ω),
∫

∂ω
uds = 0

}

.

4.3.2 Topological asymptotic expansion

First, we write Equation (14) in the form

(aρ − ãρ)(u0, vρ) =−
∫

Σρ

∂nv0(u0 − u0(0))ds+ k2ρN |ω|u0(0)v0(0)

−
∫

Σρ

∂nl
pρ
ρ (u0 − u0(0))ds+

4
∑

i=1

Ei(ρ),

with

E1(ρ) = −
∫

Σρ

(∂nl
wρ
ρ − ∂nl

pρ
ρ )(u0 − u0(0))ds, E2(ρ) =

∫

ωρ

L(u0 − u0(0))dx,

E3(ρ) = k2u0(0)

[

∫

ωρ

v0dx− ρN |ω|v0(0)

]

, E4(ρ) = k2
∫

ωρ

u0l
wρ
ρ dx.

Above, we have denoted by |ω| the Lebesgue measure of ω, i.e., |ω| = 4π/3 in
3D, |ω| = π in 2D. To improve the readability, all error estimates are reported
in Section 8. For all ϕ ∈ H1/2(Σ), let lϕ denote the solution of











∆lϕ = 0 in ω,

lϕ = ϕ on Σ.
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For all x ∈ Σρ, we have

lpρ

ρ (x) = ρlP
(

x

ρ

)

and ∂nl
pρ

ρ (x) = ∂nl
P

(

x

ρ

)

.

The jump relation of the single layer potential yields

λ(y) = −∇v0(0).n − ∂nl
P (y) ∀y ∈ Σ.

Thus, we can write

(aρ − ãρ)(u0, vρ) =
∫

Σρ

λ

(

x

ρ

)

(u0 − u0(0))ds+ k2ρN |ω|u0(0)v0(0)

−
∫

Σρ

(∂nv0 −∇v0(0).n)(u0 − u0(0))ds+
4
∑

i=1

Ei(ρ)

= ρN−1
∫

Σ
λ(x)(u0(ρx) − u0(0))ds+ k2ρN |ω|u0(0)v0(0)

−ρN−1
∫

Σ
(∂nv0(ρx) −∇v0(0).n)(u0(ρx) − u0(0))ds+

4
∑

i=1

Ei(ρ).

Finally, denoting

E5(ρ) = −ρN−1
∫

Σ
(∂nv0(ρx) −∇v0(0).n)(u0(ρx) − u0(0))ds,

E6(ρ) = ρN−1
∫

Σ
λ(y)(u0(ρy) − u0(0) −∇u0(0).ρy)ds(y),

we obtain

(aρ − ãρ)(u0, vρ) = ρN∇u0(0).
∫

Σ
λ(x)xds(x) + k2ρN |ω|u0(0)v0(0) +

6
∑

i=1

Ei(ρ).

In Subsection 8.2, we prove that |Ei(ρ)| = o(ρN) for all i = 1, ..., 6. Therefore,
we have

f(ρ) = ρN ,

δa = ∇u0(0).
∫

Σ
λ(x)xds(x) + k2|ω|u0(0)v0(0).

We are going to rewrite this expression in order to show the dependence of δa
with respect to the adjoint state. Thanks to the linearity of Equation (17), it
comes

∫

Σ
λ(x)xds(x) = −A∇v0(0)

where the matrix A is defined by

AV =
∫

Σ
η(x)xds(x) ∀V ∈ C

N , (18)
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the density η ∈ H
−1/2
0 (Σ) being the unique solution of

η(x)

2
+
∫

Σ
η(y)∂nx

E(x− y)ds(y) = V.n ∀x ∈ Σ. (19)

Since the matrix A maps a vector of R
N to a vector of R

N , its coefficients are
real numbers. It corresponds to the well-known notion of polarization tensor
[22]. It is proved e.g. in [11] that A is symmetric positive definite in our context.
We refer to [2,4] for further properties of polarization tensors. We derive the
following result as a consequence of Theorem 1.

Theorem 2 We assume that

• the cost function satisfies Hypothesis 3 with f(ρ) = ρN ,
• Hypotheses 4, 5 and 6 are satisfied,
• the adjoint state v0 solves











v0 ∈ H1(Ω),

a0(u, v0) = −L0(u) ∀u ∈ H1(Ω),
(20)

• the polarization tensor A is defined by (18).

Then the cost function admits the asymptotic expansion:

j(ρ) − j(0)= ρNℜ
(

−∇u0(0).A∇v0(0) + k2|ω|u0(0)v0(0) + δJ
)

+ o(ρ2).

(21)

4.4 Spherical hole

The case where ω = B(0, 1), the unit ball of R
N , is of particular interest for

the applications. By using spherical (polar in 2D) coordinates, or by solving
explicitly the associated exterior and interior problems and by calculating the
density as the jump between the normal derivatives, one can check that the
solution of Equation (19) is

η(x) =
N

N − 1
V.x ∀x ∈ Σ

and consequently that

A =
N

N − 1
|ω|I.
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The topological asymptotic reads

j(ρ)− j(0) = |ω|ρNℜ
(

− N

N − 1
∇u0(0).∇v0(0) + k2u0(0)v0(0) +

δJ
|ω|

)

+o(ρN).

(22)

5 Creation of a Crack

5.1 Formulation of the initial problem in the cracked domain

We have here Ωρ = Ω \ Σρ. We set for all ρ ≥ 0 and all u, v ∈ H1(Ωρ)











ãρ(u, v) = aρ(u, v),

l̃ρ(v) = aρ(u0, v).

It is then obvious that Hypothesis 1 holds. We have in this case by construction
δa = 0, and we shall determine f(ρ) and δl.

5.2 Preliminary calculus

We obtain thanks to the Green formula

(lρ − l̃ρ)(vρ) =
∫

Σρ

∂nu0[wρ]ds

= ρN−1
∫

Σ
∂nu0(ρx)[wρ(ρx)]ds,

where [vρ] = vρ
+
|Σρ

− vρ
−
|Σρ

∈ H
1/2
00 (Σρ) (see Figure 1) and wρ = vρ − v0. We

make the following assumption on the cost function.

Hypothesis 7 For all ρ sufficiently small and all u ∈ H1(Ω),

L0(u) = Lρ(u|Ωρ
). (23)

Moreover, L0, as a distribution, is of regularity H1 in a neighborhood of the
origin.
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Thus, the function wρ satisfies:



























∆wρ + k̄2wρ = 0 in Ωρ,

∂nwρ = −∂nv0 on Σρ,

∂nwρ = S∗wρ on Γ.

(24)

5.3 Asymptotic analysis

5.3.1 Approximation of wρ

We will show that a suitable approximation of wρ is provided by the function

pρ(x) = ρPρ

(

x

ρ

)

,

where Pρ ∈W 1(RN \ Σ) is the solution of



























∆Pρ = 0 in R
2 \ Σ,

Pρ = O(1/rN−1) at ∞,

∂nPρ(x) = −∂nv0(ρx) on Σ.

This function Pρ can be written with the help of the double layer potential:

Pρ(x) =
∫

Σ
µρ(y)∂ny

E(x− y)ds(y) ∀x ∈ R
N \ Σ. (25)

The density µρ ∈ H
1/2
00 (Σ) is defined by

µρ = T (−∂nv0(ρx)), (26)

where T is a continuous isomorphism from H
1/2
00 (Σ)′ into H

1/2
00 (Σ). We recall

the expression of the map T−1 for a linear (planar in 3D) crack (see [20,9]):

for all µ ∈ (H
1/2
00 ∩ C1)(Σ) and ϕ ∈ D(Σ),

< T−1µ, ϕ >= −
∫

Σ

∫

Σ

dµ

ds
(x)

dϕ

ds
(y)E(x− y)ds(x)ds(y) in 2D,

< T−1µ, ϕ >= −
∫

Σ

∫

Σ
curlΣ µ(x).curlΣ ϕ(y)E(x− y)ds(x)ds(y) in 3D.

In this latter expression, we use the notation

curlΣ u = n ×∇ũ,

14



where ũ is an arbitrary lifting of u in R
N \ Σ.

Then, we approximate µρ by

µ = T (−∇v0(0).n). (27)

5.3.2 Topological asymptotic expansion

Denoting by

E1(ρ) = ρN−1
∫

Σ
∂nu0(ρx)[(wρ − pρ)(ρx)]ds,

we have
(lρ − l̃ρ)(vρ) = ρN

∫

Σ
∂nu0(ρx)[Pρ]ds+ E1(ρ).

By virtue of the jump relation of the double layer potential, [Pρ] = −µρ.
Hence,

(lρ − l̃ρ)(vρ) =−ρN
∫

Σ
∂nu0(ρx)µρds+ E1(ρ)

=−ρN
∫

Σ
∂nu0(ρx)µds+ E1(ρ) + E2(ρ)

with
E2(ρ) = −ρN

∫

Σ
∂nu0(ρx)(µρ − µ)ds.

Finally, setting

E3(ρ) = −ρN
∫

Σ
(∂nu0(ρx) −∇u0(0).n)µds,

we get

(lρ − l̃ρ)(vρ) = −ρN
∫

Σ
∇u0(0).nµds+

3
∑

i=1

Ei(ρ).

In Subsection 8.3, we prove that |Ei(ρ)| = o(ρN) for all i = 1, ..., 3. Therefore,
we have

f(ρ) = ρN ,

δl =
∫

Σ
∇u0(0).nµds.

Again, it is convenient to introduce the polarization matrix B defined by

BV =
∫

Σ
ηnds ∀V ∈ C

N , (28)

where
η = T (V.n). (29)

We obtain the following result as a consequence of Theorem 1.

Theorem 3 We assume that

15



• the cost function satisfies Hypothesis 3 with f(ρ) = ρN ,
• Hypotheses 4, 5 and 7 are satisfied,
• the adjoint state v0 is solution of (20),
• the polarization tensor B is defined by (28).

Then the cost function admits the asymptotic expansion:

j(ρ) − j(0) = ρNℜ
(

−∇u0(0).B∇v0(0) + δJ
)

+ o(ρN). (30)

5.4 Linear and planar cracks

• Linear crack (2D). Let Σ be the line segment {(s, 0),−1 < s < 1}. The
solution of Equation (29) is

η(x) = 2
√

1 − s2(V.n) ∀x = (s, 0) ∈ Σ.

• Planar circular crack (3D). Consider the planar unit disc Σ = {(r cos θ, r sin θ, 0), 0 ≤
r < 1, 0 ≤ θ < 2π}. One can check (by a very technical calculus) that the
corresponding density is

η(x) =
4

π

√
1 − r2(V.n) ∀x ∈ Σ, |x| = r.

The integration over Σ of the above densities leads to the polarization matrix

B = αn ⊗ n,

where n ⊗ n := nnT and

α =











π in 2D,
8

3
in 3D.

The topological asymptotic expansion reads

j(ρ) − j(0) = ρNℜ
(

−α(∇u0(0).n)(∇v0(0).n) + δJ
)

+ o(ρN). (31)

5.5 General comments

For an arbitrarily shaped hole or crack, the topological gradient expresses by
means of a polarization tensor that can be computed numerically. When the
principal part of the differential operator is different from the Laplacian, the
adequate fundamental solution must be used for solving the integral equations
(19) and (29). The term δJ , that depends on the chosen criterion, is explicited
for some particular choices in the following section.

16



6 Particular cost functions

The following theorem is proved in Subsection 8.4.

Theorem 4 For the following cost functions, Hypotheses 3, 6 and 7 hold for
the values of δJ indicated below.

(1) First example. The easiest case consists in a cost function of the form

Jρ(uρ) = J(uρ|DR
)

where DR = Ω\B(0, R), R being a fixed radius such that B(0, R) ⊂ Ω. We
assume that there exists L0 ∈ (H1(DR))′ such that, when h ∈ H1(DR),

J(u0|DR
+ h) − J(u0|DR

) = ℜL0(h) +O(‖h‖2
1,DR

).

For such a criterion, we have δJ = 0.
(2) Second example. It consists in the least-square cost function

Jρ(u) =
∫

Ωρ

|u− ud|2dx,

where ud belongs to H1(Ω) and is continuous in the vicinity of the origin.
In this case,

δJ =











−|ω||u0(0) − ud(0)|2 for a hole,

0 for a crack.

7 Numerical experiments

7.1 Description of the problem and of the recovery method

It is of particular interest to apply the topological asymptotic approach to
the equations of elastodynamics. Indeed many target detection methods in-
volved in fields such as non destructive testing, submarine detection or medical
imaging use the so-called pulse-echo method with acoustic or elastic waves at
ultrasonic frequencies. The basic principle is the one of echography. A short
pulse source is sent through the medium with an emitter/receiver apparatus
and the variation of elastic properties of the medium (characterizing the kind
of target) generates scattered waves that are recorded by the receiving appa-
ratus. In the case of air bubbles, cracks or delaminations in solids, a Neumann
boundary condition is involved at the edge of the defect. The major issue is
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to be able to read the results so as to detect, localize and characterize the
target(s). The topological gradient is a great prospect for the automatic in-
terpretation of these kind of results. It is clear that the pulse-echo method
is intrinsically a transient phenomenon, then in order to mimic it we need
to derive asymptotic formulas for the elastodynamics equations in the time
domain.

To do so we extend the formulas obtained in the time-harmonic case to the
dynamic problem by using the duality of the frequency and time domains
through the Fourier transform. The time domain problem associated to the
linear elasticity problem reads

ρd
∂2u

∂t2
− div σ(u) = 0. (32)

The corresponding time-harmonic problem is

−ρd ν
2û− div σ(û) = 0,

where û(x, ν) =
∫

R
u(t, x)e−iνtdt is the Fourier transform of the displacement

field u(x, t). The notations ρd and ν standing for the material density and the
pulsation, respectively, are adopted to avoid any confusion with the previously
introduced notations ρ (the radius of the infinitesimal perforation) and ω (the
hole of unitary size). We recall that in the context of linear elasticity, which
is adequate for our applications, the stress tensor σ(u) is a linear function
of the first spatial derivatives of u, characterized by Hooke’s tensor which is
well-known to be symmetric positive definite. Hence we are in the scope of the
analysis developed beforehand.

Starting with the cost function of the time domain problem and using succes-
sively Fubbini’s theorem and Parseval’s equality, it comes

J(u) =
1

2

∫

R

(
∫

Γm

|u−um|2dx) dt =
∫

R

(
1

2

∫

Γm

|û−ûm|2dx) dν =
∫

R

Jν(û(., ν)) dν.

(33)
Here, Γm denotes the sensors locations, namely a part of the border of Ω where
the measurements are performed and um is the measured displacement field.
At a given frequency, the topological asymptotic expansion for Jν(û(·, ν)) is
known. Starting from

J(uρ) − J(u0) =
∫

R

(Jν(ûρ(., ν)) − Jν(û0(., ν))) dν, (34)

then using (33) and Parseval’s equality, and assuming that
∫

R
o(ρ2) dν ∼

o(ρ2), one obtains the expressions for the time domain problem. Denoting
û0 = û0(x0, ν) to simplify the writing, one has for instance for a circular
hole created around the point x0 (see Theorem 2 with the polarization tensor
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replaced by the one obtained by Garreau et al [12]):

J(uρ) − J(u0)

= πρ2
∫

R

(

βσ(û0) : ε(v̂0) + γtrσ(û0)trε(v̂0) + ρd ν
2 û0.v̂0

)

dν + o(ρ2)

= πρ2
∫

R

(βσ(u0) : ε(v0) + γtrσ(u0)trε(v0) − ρd ∂tu0. ∂tv0) dt+ o(ρ2).

(35)

where ε is the strain tensor of the material, and β, γ are combinations of the
Lamé coefficients λ and µ. In plane stress β = −8 λ+µ

3λ+2µ
, γ = −2 (λ+µ)(λ−2µ)

(λ+2µ)(3λ+2µ)
.

The topological gradient at any point x0 ∈ Ω is then

g(x0) =
∫

R

(βσ(u0) : ε(v0) + γtrσ(u0)trε(v0) − ρd ∂tu0. ∂tv0) dt,

where all the quantities in the integrand are evaluated at the point x0. Prac-
tically we will not have access to the solutions for t ∈ R, but only over an
interval [0, T ]. Then T must be taken large enough so that the amplitude of
the fields in the computation domain after the time T is weak enough to be
neglected when computing the topological gradient.

7.2 The forward solver

It can be shown that the adjoint problem can be solved with the forward
solver provided attention is paid to the fact that the adjoint problem solves
backward in time, from t = T to t = 0.

We use a finite difference C++ code following Virieux’s numerical scheme [27]
which is accurate at the order 2 in space and time and intrinsically centered.
It allows one to take into account abrupt ruptures of elastic properties or
density such as fluid/solid interfaces. This code is integrated to the software
ACEL developed by M. Tanter [26] and which is dedicated to the simulation of
acoustic and elastic wave propagation. The boundary conditions at the edges
of the computation domain are either of the classical Dirichlet and Neumann
type, or of absorbing type to simulate unbounded propagation. The imple-
mented absorbing conditions are Perfectly Matched Layers following Collino
and Tsogka [8].

7.3 Numerical results

In this section we present numerical results relative to non destructive testing.
The measurement step is up to now replaced by a numerical solving of the
forward problem in the presence of the obstacles. The presented results are 2D
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since the 3D code is still being developed.

7.3.0.1 Unique defect in an isotropic solid The considered medium
is an isotropic aluminium slab of density ρd = 2572 kg.m−3, the compressional
(index p) and shear (index s) speeds of propagation are vp = 6408m.s−1 and
vs = 3228m.s−1. The ultrasonic linear array is placed at the bottom of the
slab. We use a 55 sensors array, all of them being used in emission and receive.
Absorbing conditions are positioned at the boundaries of the computation
domain, except at the bottom where a Dirichlet condition models the presence
of the sensors.
The emitted signal is a pulse of 1 µs at the central frequency of 2 MHz (fig. 2).
The defect is as shown on figure 3(a), it corresponds to a cylindrical hole whose
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Figure 2. Source : temporal signal (top), frequency spectrum (bottom)

size is of the order of the compressional wavelength λp. Then the boundary
condition at the edges of the defect is 2D Neumann.

(a) (b)

Figure 3. Detection of a unique defect. (a) Position of the defect, (b) Levels of the
topological gradient

The position of the defect is clearly pointed out by the high level values of the
topological gradient. The negative values (in red) indicate the bottom of the
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defect. Indeed, since we insonify from the bottom of the slab, it is clear that
we have information about the shape of the bottom of the defect, and poor
information in the acoustical shadow zones.

7.3.0.2 Multiple shaped defects Let us now test the ability of the
method to detect multiple defects of different sizes and shapes. We put five de-
fects of various shapes in the aluminium slab (fig. 4(a)). Their horizontal sizes
vary from λp

5
to 3λp

2
. These defects are well resolved since they are separated

from more than a wavelength. We use the same linear array and source as in
the previous example. In order to draw nearer to experimental non destructive
testing conditions, we have added white noise to the simulated measurements.
Figures 4(b)(c)(d) show the levels of the topological gradient when the noise
level is respectively of 0%, 5% and 10% of the maximum value of the emitted
signal, corresponding respectively to signal to noise ratios of ∞, 5 and 2.5 on
the signal scattered by the defects. In each presented result, the five defects
are detected and localized. The approximate sizes and shapes of the obstacles
are obtained, except in the shadow zones. It is very interesting to see that the
method has a robust behavior upon addition of noise to the simulated mea-
surements. It allows one to be optimistic as for the application of the method
to experimental measurements that are intrinsically noisy.

8 Proofs

The aim of this section is to prove Theorems 2, 3 and 4. We recall that, for
any fixed radius R > 0, DR = Ω \ B(0, R). The letter c denotes any positive
constant that may change from place to place but that never depends on ρ.

8.1 Preliminary lemmas

The following lemmas are valid for both types of domain perturbation. We
will use the notations:

• for a perforation,

T (Σ) = H
−1/2
0 (Σ), T (Σρ) = H

−1/2
0 (Σρ),

U = R
N \ ω, Uρ = R

N \ ωρ,

• for a crack,
T (Σ) = H

1/2
00 (Σ)′, T (Σρ) = H

1/2
00 (Σρ)

′,
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(a) (b)

(c) (d)

Figure 4. Detection of multiple shaped defects. (a) Positions of the defects, (b)-(d)
Levels of the topological gradient (b) with no added noise, (c) with 5% of noise, (d)
with 10% of noise

U = R
N \ Σ, Uρ = R

N \ Σρ.

Lemma 3 Consider g ∈ T (Σ) and let z ∈ W 1(U) be the solution of the
problem



























∆z = 0 in U ,
z = O(1/rN−1) at ∞,

∂nz = g on Σ.

There exists c > 0 such that

|z|1, 1
ρ
DR

≤ cρ
N
2 ‖g‖T (Σ).

Proof. Let us first consider the case of a hole. We have the single layer potential
representation

z(x) =
∫

Σ
λ(y)E(x− y)ds(y), ∀x ∈ R

N \ ω̄,
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where λ ∈ H
−1/2
0 (Σ) depends continuously on g. Using a Taylor expansion of

E computed at the point x, we obtain that

|∇z(x)| ≤ c

|x|N ‖g‖−1/2,Σ,

from which we deduce easily the desired estimate. For a crack, we use the
double layer potential representation

z(x) =
∫

Σ
µ(y)∂ny

E(x− y)ds(y), ∀x ∈ R
N \ Σ,

with µ ∈ H
1/2
00 (Σ). The reasoning is then similar to the previous case. �

Lemma 4 For all ρ and all g ∈ T (Σρ), the solution zρ ∈ W 1(Uρ) to the
problem



























∆zρ = 0 in Uρ,

zρ = O(1/rN−1) at ∞,

∂nzρ = g on Σρ

satisfies the estimates

‖zρ‖0,Ωρ
≤ cρ

N
2

+1‖g(ρx)‖T (Σ),

|zρ|1,Ωρ
≤ cρ

N
2 ‖g(ρx)‖T (Σ),

|zρ|1,DR
≤ cρN‖g(ρx)‖T (Σ).

Proof. We set Zρ(x) = zρ(ρx). The function Zρ solves



























∆Zρ = 0 in U ,
Zρ = O(1/rN−1) at ∞,

∂nZρ = ρg(ρx) on Σ.

By elliptic regularity, we have

‖Zρ‖W 1(U) ≤ c‖ρg(ρx)‖T (Σ).

A change of variable yields

‖zρ‖0,Ωρ
≤ cρ

N
2 ‖ρg(ρx)‖T (Σ),

|zρ|1,Ωρ
≤ cρ

N
2
−1‖ρg(ρx)‖T (Σ).

The last inequality to be proved stems from Lemma 3 and a change of variable.
�

A proof of the following lemma can be found in [5].
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Lemma 5 Consider σ ∈ H−1/2(Γ), ρ ≥ 0, f ∈ L2(Ω) and let zρ ∈ H1(Ωρ) be
the solution of the problem



























∆zρ + k2zρ = f in Ωρ,

∂nzρ = Szρ + σ on Γ,

∂nzρ = 0 on Σρ.

There exist ρ2 > 0 and a constant c > 0 independent of ρ, f and σ such that
for all ρ < ρ2

‖zρ‖1,Ωρ
≤ c‖f‖0,Ωρ

+ c‖σ‖− 1

2
,Γ.

This result remains true if we replace S by S∗ and k by k̄.

Combining Lemma 4 and Lemma 5, we obtain the following result.

Lemma 6 Consider σ ∈ H−1/2(Γ), ρ ≥ 0, g ∈ T (Σρ), f ∈ L2(Ωρ) and let
zρ ∈ H1(Ωρ) be the solution of the problem



























∆zρ + k2zρ = f in Ωρ,

∂nzρ = Szρ + σ on Γ,

∂nzρ = g on Σρ.

(36)

There exist some constants independent of ρ, σ, f and g such that for all ρ
sufficiently small

‖zρ‖0,Ωρ
≤ cρ

N
2

+1‖g(ρx)‖T (Σ) + c‖f‖0,Ωρ
+ c‖σ‖− 1

2
,Γ,

|zρ|1,Ωρ
≤ cρ

N
2 ‖g(ρx)‖T (Σ) + c‖f‖0,Ωρ

+ c‖σ‖− 1

2
,Γ,

‖zρ‖1,DR
≤ cρ

N
2

+1‖g(ρx)‖T (Σ) + c‖f‖0,Ωρ
+ c‖σ‖− 1

2
,Γ.

This result remains true if we replace S by S∗ and k by k̄.

8.2 Proof of Theorem 2 (Topological asymptotic for a hole)

We shall successively prove that Ei(ρ) = o(ρN) for i = 1, ..., 6.

(1) We set eρ = pρ −wρ. We have, using basically the fact that u0 is of class
C∞ in the vicinity of the origin,
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|E1(ρ)|=
∣

∣

∣

∣

∣

∫

ωρ

∇leρ
ρ .∇u0dx

∣

∣

∣

∣

∣

≤ |leρ

ρ |1,ωρ
|u0|1,ωρ

≤ cρN−1|leρ

ρ (ρx)|1,ω‖u0‖C1(ωρ)

≤ cρN−1|leρ(ρx)|1,ω

≤ cρN−1‖eρ(ρx)‖
H

1

2 (Σ)/C
.

We recall the definition of the quotient norm:

‖u‖
H

1

2 (Σ)/C
= inf

v−u=Cst
‖v‖

H
1

2 (Σ)
. (37)

Yet, the function eρ solves



























∆eρ + k̄2eρ = k̄2pρ in Ωρ,

∂neρ = −∇v0(0).n + ∂nv0 on Σρ,

∂neρ = S∗eρ + ∂npρ − S∗pρ on Γ.

Hence, by Lemma 6,

|eρ|1,Ωρ
≤ cρ

N
2 ‖ − ∇v0(0).n + ∂nv0(ρx)‖− 1

2
,Σ + c‖k̄2pρ‖0,Ωρ

+c‖∂npρ − S∗pρ‖− 1

2
,Γ

≤ cρ
N
2 ‖ − ∇v0(0).n + ∂nv0(ρx)‖− 1

2
,Σ + c‖pρ‖0,Ωρ

+ c‖pρ‖1,DR
.

Using the interior regularity theorem, we obtain that there exists ρ3 > 0
such that v0 ∈ H3(ωρ3

) ⊂ C1(ωρ3
). Thus, we have

lim
ρ→0

‖ − ∇v0(0).n + ∂nv0(ρx)‖− 1

2
,Σ = 0. (38)

Thanks to Lemma 4,

‖pρ‖0,Ωρ
+ ‖pρ‖1,DR

≤ cρ
N
2

+1‖∇v0(0).n‖− 1

2
,Σ ≤ cρ

N
2

+1.

Hence
|eρ|1,Ωρ

= o(ρ
N
2 ).

Using successively the trace theorem, the equivalence of the norm and the
semi-norm in H1/C and a change of variable and denoting by B some
ball containing ω, we obtain that

‖eρ(ρx)‖
H

1

2 (Σ)/C
≤ c‖eρ(ρx)‖H1(B\ω̄)/C ≤ c|eρ(ρx)|1,B\ω̄ ≤ cρ1−N

2 |eρ|1,Ωρ
,

from which we deduce that E1(ρ) = o(ρN).
(2) The fact that, in the vicinity of the origin, L is continuous and u0 is of

class C∞ yields directly |E2(ρ)| ≤ cρN+1.
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(3) We have

E3(ρ) = k2u0(0)
∫

ωρ

(v0 − v0(0))dx.

Since v0 is of class C1 in the vicinity of the origin, we obtain immediately
with the help of a Taylor expansion that |E3(ρ)| ≤ cρN+1.

(4) We get by a change of variable

|E4(ρ)| = k2ρN

∣

∣

∣

∣

∫

ω
u0(ρx)lwρ(ρx)dx

∣

∣

∣

∣

≤ cρN‖lwρ(ρx)‖0,ω.

The elliptic regularity, the trace theorem and a change of variable bring
successively

|E4(ρ)| ≤ cρN‖wρ(ρx)‖ 1

2
,Σ

≤ cρN‖wρ(ρx)‖1, 1
ρ
Ωρ

≤ cρN
(

ρ−
N
2 ‖wρ‖0,Ωρ

+ ρ1−N
2 |wρ|1,Ωρ

)

.

Then, Lemma 6 and the fact that v0 is of class C1 in the vicinity of the
origin furnish

|E4(ρ)| ≤ cρN+1‖∂nv0(ρx)‖− 1

2
,Σ ≤ cρN+1.

(5) We have

|E5(ρ)| ≤ ρN−1‖∂nv0(ρx) −∇v0(0).n‖− 1

2
,Σ‖u0(ρx) − u0(0)‖ 1

2
,Σ.

Equation (38) and the regularity of u0 near the origin yield E5(ρ) = o(ρN).
(6) We have

|E6(ρ)| ≤ ρN−1‖λ‖− 1

2
,Σ‖u0(ρy) − u0(0) −∇u0(0).ρy‖ 1

2
,Σ.

With the help of a Taylor expansion, we derive |E6(ρ)| ≤ cρN+1, which
completes the proof of the theorem. �

8.3 Proof of Theorem 3 (Topological asymptotic for a crack)

We have here to prove that Ei(ρ) = o(ρN) for all i = 1, ..., 3.

(1) Setting eρ = pρ − wρ, we have

|E1(ρ)| ≤ ρN−1‖∂nu0(ρx)‖
(H

1

2

00
(Σ))′

‖[eρ(ρx)]‖
H

1

2

00
(Σ)

≤ cρN−1‖[eρ(ρx)]‖
H

1

2

00
(Σ)
.
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The function eρ solves



























∆eρ + k̄2eρ = k̄2pρ in Ωρ,

∂neρ = 0 on Σρ,

∂neρ = S∗eρ + ∂npρ − S∗pρ on Γ.

Therefore, Lemma 5 yields

‖eρ‖1,Ωρ
≤ c‖k̄2pρ‖0,Ωρ

+ c‖∂npρ − S∗pρ‖− 1

2
,Γ

≤ c‖pρ‖0,Ωρ
+ c‖pρ‖1,DR

.

Yet, according to Lemma 4,

‖pρ‖0,Ωρ
+ ‖pρ‖1,DR

≤ cρ
N
2

+1‖∂nu0(ρx)‖
(H

1

2

00
(Σ))′

≤ cρ
N
2

+1.

Thus,

‖eρ‖1,Ωρ
≤ cρ

N
2

+1.

Besides, we have the estimates

‖[eρ(ρx)]‖
H

1

2

00
(Σ)

≤ c‖eρ(ρx)‖H1(B\Σ)/C ≤ c|eρ(ρx)|1,B\Σ ≤ cρ1−N
2 |eρ|1,Ωρ

.

It follows that |E1(ρ)| ≤ cρN+1.
(2) We have

|E2(ρ)| ≤ ρN‖∂nu0(ρx)‖
(H

1

2

00
(Σ))′

‖µρ − µ‖
H

1

2

00
(Σ)

≤ cρN‖µρ − µ‖
H

1

2

00
(Σ)
.

By continuity of the operator T , it comes

‖µρ − µ‖
H

1

2

00
(Σ)

≤ c‖∂nv0(ρx) −∇v0(0).n‖
(H

1

2

00
(Σ))′

.

Hypothesis 7 guarantees that v0 is of class C1 in the vicinity of the origin.
Thus,

lim
ρ→0

‖∂nv0(ρx) −∇v0(0).n‖
(H

1

2

00
(Σ))′

= 0 (39)

and E2(ρ) = o(ρN).
(3) We have

|E3(ρ)| ≤ ρN‖∂nu0(ρx) −∇u0(0).n‖
(H

1

2

00
(Σ))′

‖µ‖
H

1

2

00
(Σ)
.

Next, as u0 is of class C∞ in the vicinity of the origin, we derive that
|E3(ρ)| ≤ cρN+1, which ends up the proof of the theorem. �
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8.4 Proof of Theorem 4 (Examples of cost functions)

We start with a preliminary lemma. The proof consists in applying Lemma 6
to the function uρ − u0 restricted to Ωρ.

Lemma 7 We have the estimates

‖uρ − u0‖0,Ωρ
= O(ρ

N
2

+1) and ‖uρ − u0‖1,DR
= O(ρ

N
2

+1).

We now turn to the proof of Theorem 4.

(1) For the first category of cost functions, the result is an immediate appli-
cation of Lemma 7.

(2) For the second example, we only present the case of a perforation. The
case of a crack can be treated in a similar way. We have

Jρ(uρ) − J0(u0) =
∫

Ωρ

(|uρ − ud|2 − |u0 − ud|2)dx−
∫

ωρ

|u0 − ud|2dx

=
∫

Ωρ

[

|uρ − u0|2 + 2ℜ((u0 − ud)(uρ − u0))
]

dx−
∫

ωρ

|u0 − ud|2dx.

Lemma 6, the regularity of u0 and ud near the origin and the fact that

Lρ(u) =
∫

Ωρ

2(u0 − ud)udx ∀u ∈ H1(Ωρ)

yield

Jρ(uρ) − J0(u0) = ℜLρ(uρ − u0) − ρN |ω||u0(0) − ud(0)|2dx+ o(ρN),

which completes the proof.
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[22] G. Pólya, G. Szegö, Isoperimetric inequalities in Mathematical Physics,
Annals of Mathematical Studies no. 27, Princeton University Press, 1951.

[23] B. Samet, S. Amstutz, M. Masmoudi, The topological asymptotic for the

Helmholtz equation, SIAM J. Control Optim. Vol. 42(5), pp. 1523-1544, 2003.

[24] A. Schumacher, V.V. Kobolev, H.A. Eschenauer, Bubble method for

topology and shape optimization of structures, Journal of structural optimization
no. 8, pp. 42-51, 1994.

[25] J. Sokolowski, A. Zochowski, On the topological derivative in shape

optimization, SIAM J. Control Optim. 37, pp. 1241-1272, 1999.

[26] M. Tanter, Software
URL: http://www.loa.espci.fr/∼michael/fr/acel/aceltest.htm

[27] J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress

finite-difference method, Geophysics 51 (4), pp. 889-901, 1986.

[28] M.S. Vogelius, D. Volkov, Asymptotic formulas for perturbations in the

electromagnetic fields due to the presence of inhomogeneities of small diameter,
Math. Model. Num. Anal., 34(4), pp. 723-748, 2000.

30




